論文の概要: Adversarial Training Using Feedback Loops
- arxiv url: http://arxiv.org/abs/2308.11881v1
- Date: Wed, 23 Aug 2023 02:58:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-24 16:10:14.411894
- Title: Adversarial Training Using Feedback Loops
- Title(参考訳): フィードバックループを用いた対人訓練
- Authors: Ali Haisam Muhammad Rafid, Adrian Sandu
- Abstract要約: ディープニューラルネットワーク(DNN)は、一般化性に制限があるため、敵の攻撃に非常に敏感である。
本稿では制御理論に基づく新しいロバスト化手法を提案する。
フィードバック制御アーキテクチャに基づく新しい逆行訓練アプローチは、フィードバックループ逆行訓練(FLAT)と呼ばれる。
- 参考スコア(独自算出の注目度): 1.6114012813668932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural networks (DNN) have found wide applicability in numerous fields
due to their ability to accurately learn very complex input-output relations.
Despite their accuracy and extensive use, DNNs are highly susceptible to
adversarial attacks due to limited generalizability. For future progress in the
field, it is essential to build DNNs that are robust to any kind of
perturbations to the data points. In the past, many techniques have been
proposed to robustify DNNs using first-order derivative information of the
network.
This paper proposes a new robustification approach based on control theory. A
neural network architecture that incorporates feedback control, named Feedback
Neural Networks, is proposed. The controller is itself a neural network, which
is trained using regular and adversarial data such as to stabilize the system
outputs. The novel adversarial training approach based on the feedback control
architecture is called Feedback Looped Adversarial Training (FLAT). Numerical
results on standard test problems empirically show that our FLAT method is more
effective than the state-of-the-art to guard against adversarial attacks.
- Abstract(参考訳): ディープニューラルネットワーク(dnn)は、非常に複雑な入出力関係を正確に学習する能力があるため、多くの分野において幅広い適用性を見出している。
精度と広範囲な使用にもかかわらず、DNNは限定的な一般化性のために敵の攻撃を受けやすい。
この分野の今後の進歩のためには、データポイントに対するあらゆる摂動に対して堅牢なDNNを構築することが不可欠である。
これまで,ネットワークの1次微分情報を用いてDNNを堅牢化する手法が提案されてきた。
本稿では制御理論に基づく新しいロバスト化手法を提案する。
フィードバック制御を組み込んだニューラルネットワークアーキテクチャであるFeedback Neural Networksが提案されている。
コントローラ自体はニューラルネットワークであり、システムの出力を安定化するなど、通常のデータと逆データを使ってトレーニングされる。
フィードバック制御アーキテクチャに基づく新しい逆行訓練アプローチは、フィードバックループ逆行訓練(FLAT)と呼ばれる。
標準的なテスト問題に対する数値的な結果から,我々のFLAT法は敵攻撃に対する防御技術よりも有効であることが示された。
関連論文リスト
- Set-Based Training for Neural Network Verification [8.97708612393722]
小さな入力摂動はニューラルネットワークの出力に大きな影響を与える。
安全クリティカルな環境では、入力はノイズの多いセンサーデータを含むことが多い。
我々は、堅牢なニューラルネットワークをトレーニングして正式な検証を行う、エンドツーエンドのセットベーストレーニング手順を採用している。
論文 参考訳(メタデータ) (2024-01-26T15:52:41Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - An Automata-Theoretic Approach to Synthesizing Binarized Neural Networks [13.271286153792058]
量子ニューラルネットワーク(QNN)が開発され、二項化ニューラルネットワーク(BNN)は特殊なケースとしてバイナリ値に制限されている。
本稿では,指定された特性を満たすBNNの自動合成手法を提案する。
論文 参考訳(メタデータ) (2023-07-29T06:27:28Z) - Adversarial training with informed data selection [53.19381941131439]
アドリアリトレーニングは、これらの悪意のある攻撃からネットワークを守るための最も効率的なソリューションである。
本研究では,ミニバッチ学習に適用すべきデータ選択戦略を提案する。
シミュレーションの結果,ロバスト性および標準精度に関して良好な妥協が得られることがわかった。
論文 参考訳(メタデータ) (2023-01-07T12:09:50Z) - Deep Binary Reinforcement Learning for Scalable Verification [44.44006029119672]
バイナライズニューラルネットワーク(BNN)に特化したRLアルゴリズムを提案する。
Atari環境でBNNを訓練した後、ロバスト性特性を検証する。
論文 参考訳(メタデータ) (2022-03-11T01:20:23Z) - FitAct: Error Resilient Deep Neural Networks via Fine-Grained
Post-Trainable Activation Functions [0.05249805590164901]
ディープニューラルネットワーク(DNN)は、パーソナルヘルスケアデバイスや自動運転車などの安全クリティカルなシステムにますます導入されている。
本稿では,DNNの微粒化後のアクティベーション機能を実装することで,DNNのエラーレジリエンスを高めるための低コストなアプローチであるFitActを提案する。
論文 参考訳(メタデータ) (2021-12-27T07:07:50Z) - Neural Architecture Dilation for Adversarial Robustness [56.18555072877193]
畳み込みニューラルネットワークの欠点は、敵の攻撃に弱いことである。
本稿では, 良好な精度を有する背骨CNNの対角的堅牢性を向上させることを目的とする。
最小限の計算オーバーヘッドの下では、拡張アーキテクチャはバックボーンCNNの標準的な性能と親和性が期待できる。
論文 参考訳(メタデータ) (2021-08-16T03:58:00Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
CNNのホワイトボックス攻撃やブラックボックス攻撃に対する堅牢性について検討する。
結果は、蒸留されたCNN、エージェントベースの最新のprunedモデル、およびバイナライズニューラルネットワークのために示されています。
論文 参考訳(メタデータ) (2021-03-14T20:43:19Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
ディープニューラルネットワーク(DNN)は多くの異なる問題設定において最先端の結果を達成する。
DNNはしばしばブラックボックスシステムとして扱われ、評価と検証が複雑になる。
コンピュータビジョンタスクにおける畳み込みニューラルネットワーク(CNN)の成功に触発された、有望な分野のひとつは、対称幾何学的変換に関する知識を取り入れることである。
論文 参考訳(メタデータ) (2020-06-30T14:56:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。