Efficient Meta Neural Heuristic for Multi-Objective Combinatorial
Optimization
- URL: http://arxiv.org/abs/2310.15196v1
- Date: Sun, 22 Oct 2023 08:59:02 GMT
- Title: Efficient Meta Neural Heuristic for Multi-Objective Combinatorial
Optimization
- Authors: Jinbiao Chen, Jiahai Wang, Zizhen Zhang, Zhiguang Cao, Te Ye, Siyuan
Chen
- Abstract summary: We propose an efficient meta neural vector (EMNH) to solve multi-objective optimization problems.
EMNH is able to outperform the state-of-the-art neurals in terms of solution quality and learning efficiency.
- Score: 35.09656455088854
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, neural heuristics based on deep reinforcement learning have
exhibited promise in solving multi-objective combinatorial optimization
problems (MOCOPs). However, they are still struggling to achieve high learning
efficiency and solution quality. To tackle this issue, we propose an efficient
meta neural heuristic (EMNH), in which a meta-model is first trained and then
fine-tuned with a few steps to solve corresponding single-objective
subproblems. Specifically, for the training process, a (partial)
architecture-shared multi-task model is leveraged to achieve parallel learning
for the meta-model, so as to speed up the training; meanwhile, a scaled
symmetric sampling method with respect to the weight vectors is designed to
stabilize the training. For the fine-tuning process, an efficient hierarchical
method is proposed to systematically tackle all the subproblems. Experimental
results on the multi-objective traveling salesman problem (MOTSP),
multi-objective capacitated vehicle routing problem (MOCVRP), and
multi-objective knapsack problem (MOKP) show that, EMNH is able to outperform
the state-of-the-art neural heuristics in terms of solution quality and
learning efficiency, and yield competitive solutions to the strong traditional
heuristics while consuming much shorter time.
Related papers
- Unlearning as multi-task optimization: A normalized gradient difference approach with an adaptive learning rate [105.86576388991713]
We introduce a normalized gradient difference (NGDiff) algorithm, enabling us to have better control over the trade-off between the objectives.
We provide a theoretical analysis and empirically demonstrate the superior performance of NGDiff among state-of-the-art unlearning methods on the TOFU and MUSE datasets.
arXiv Detail & Related papers (2024-10-29T14:41:44Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - UCB-driven Utility Function Search for Multi-objective Reinforcement Learning [75.11267478778295]
In Multi-objective Reinforcement Learning (MORL) agents are tasked with optimising decision-making behaviours.
We focus on the case of linear utility functions parameterised by weight vectors w.
We introduce a method based on Upper Confidence Bound to efficiently search for the most promising weight vectors during different stages of the learning process.
arXiv Detail & Related papers (2024-05-01T09:34:42Z) - Non-orthogonal Age-Optimal Information Dissemination in Vehicular
Networks: A Meta Multi-Objective Reinforcement Learning Approach [0.0]
A roadside unit (RSU) provides timely updates about a set of physical processes to vehicles.
The formulated problem is a multi-objective mixed-integer nonlinear programming problem.
We develop a hybrid deep Q-network (DQN)-deep deterministic policy gradient (DDPG) model to solve each optimization sub-problem.
arXiv Detail & Related papers (2024-02-15T16:51:47Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Multi-Objective Optimization for Sparse Deep Multi-Task Learning [0.0]
We present a Multi-Objective Optimization algorithm using a modified Weighted Chebyshev scalarization for training Deep Neural Networks (DNNs)
Our work aims to address the (economical and also ecological) sustainability issue of DNN models, with particular focus on Deep Multi-Task models.
arXiv Detail & Related papers (2023-08-23T16:42:27Z) - End-to-End Meta-Bayesian Optimisation with Transformer Neural Processes [52.818579746354665]
This paper proposes the first end-to-end differentiable meta-BO framework that generalises neural processes to learn acquisition functions via transformer architectures.
We enable this end-to-end framework with reinforcement learning (RL) to tackle the lack of labelled acquisition data.
arXiv Detail & Related papers (2023-05-25T10:58:46Z) - Pareto Set Learning for Neural Multi-objective Combinatorial
Optimization [6.091096843566857]
Multiobjective optimization (MOCO) problems can be found in many real-world applications.
We develop a learning-based approach to approximate the whole Pareto set for a given MOCO problem without further search procedure.
Our proposed method significantly outperforms some other methods on the multiobjective traveling salesman problem, multiconditioned vehicle routing problem and multi knapsack problem in terms of solution quality, speed, and model efficiency.
arXiv Detail & Related papers (2022-03-29T09:26:22Z) - MODRL/D-EL: Multiobjective Deep Reinforcement Learning with Evolutionary
Learning for Multiobjective Optimization [10.614594804236893]
This paper proposes a multiobjective deep reinforcement learning with evolutionary learning algorithm for a typical complex problem called the multiobjective vehicle routing problem with time windows.
The experimental results on MO-VRPTW instances demonstrate the superiority of the proposed algorithm over other learning-based and iterative-based approaches.
arXiv Detail & Related papers (2021-07-16T15:22:20Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - Meta-Learning-based Deep Reinforcement Learning for Multiobjective
Optimization Problems [11.478548460936837]
This paper proposes a concise meta-learning-based DRL approach.
It first trains a meta-model by meta-learning.
The meta-model is fine-tuned with a few update steps to derive submodels for the corresponding subproblems.
arXiv Detail & Related papers (2021-05-06T15:09:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.