Contaminated Multivariate Time-Series Anomaly Detection with Spatio-Temporal Graph Conditional Diffusion Models
- URL: http://arxiv.org/abs/2308.12563v3
- Date: Thu, 26 Sep 2024 22:30:43 GMT
- Title: Contaminated Multivariate Time-Series Anomaly Detection with Spatio-Temporal Graph Conditional Diffusion Models
- Authors: Thi Kieu Khanh Ho, Narges Armanfard,
- Abstract summary: This paper presents a novel and practical end-to-end unsupervised TSAD when the training data is contaminated with anomalies.
The introduced approach, called TSAD-C, is devoid of access to abnormality labels during the training phase.
Our experiments conducted on four reliable and diverse datasets conclusively demonstrate that TSAD-C surpasses existing methodologies.
- Score: 8.010966370223985
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mainstream unsupervised anomaly detection algorithms often excel in academic datasets, yet their real-world performance is restricted due to the controlled experimental conditions involving clean training data. Addressing the challenge of training with noise, a prevalent issue in practical anomaly detection, is frequently overlooked. In a pioneering endeavor, this study delves into the realm of label-level noise within sensory time-series anomaly detection (TSAD). This paper presents a novel and practical end-to-end unsupervised TSAD when the training data is contaminated with anomalies. The introduced approach, called TSAD-C, is devoid of access to abnormality labels during the training phase. TSAD-C encompasses three core modules: a Decontaminator to rectify anomalies (aka noise) present during training, a Long-range Variable Dependency Modeling module to capture long-term intra- and inter-variable dependencies within the decontaminated data that is considered as a surrogate of the pure normal data, and an Anomaly Scoring module to detect anomalies from all types. Our extensive experiments conducted on four reliable and diverse datasets conclusively demonstrate that TSAD-C surpasses existing methodologies, thus establishing a new state-of-the-art in the TSAD field.
Related papers
- HCL-MTSAD: Hierarchical Contrastive Consistency Learning for Accurate Detection of Industrial Multivariate Time Series Anomalies [4.806959791183183]
We propose a novel self-supervised hierarchical contrastive consistency learning method for detecting anomalies in industrial MTS.
By developing a multi-layer contrastive loss, HCL-MTSAD can extensively mine data consistency and timestamp-temporal association.
Experiments conducted on six diverse MTS retrieved from real cyber-physical systems and server machines, indicate that HCL-MTSAD's anomaly detection capability outperforms the state-of-the-art benchmark models by an average of 1.8% in terms of F1 score.
arXiv Detail & Related papers (2024-04-12T03:39:33Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
This work proposes a novel method for generating generic Video-temporal PAs by inpainting a masked out region of an image.
In addition, we present a simple unified framework to detect real-world anomalies under the OCC setting.
Our method performs on par with other existing state-of-the-art PAs generation and reconstruction based methods under the OCC setting.
arXiv Detail & Related papers (2023-11-27T13:14:06Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Open-Set Multivariate Time-Series Anomaly Detection [7.127829790714167]
Time-series anomaly detection methods assume that only normal samples are available during the training phase.
Supervised methods can be utilized to classify normal and seen anomalies, but they tend to overfit to the seen anomalies during training.
We propose the first algorithm to address the open-set TSAD problem, called Multivariate Open-Set Time-Series Anomaly Detector (MOSAD)
MOSAD is a novel multi-head TSAD framework with a shared representation space and specialized heads, including the Generative head, the Discriminative head, and the Anomaly-Aware Contrastive head.
arXiv Detail & Related papers (2023-10-18T19:55:11Z) - Imbalanced Aircraft Data Anomaly Detection [103.01418862972564]
Anomaly detection in temporal data from sensors under aviation scenarios is a practical but challenging task.
We propose a Graphical Temporal Data Analysis framework.
It consists three modules, named Series-to-Image (S2I), Cluster-based Resampling Approach using Euclidean Distance (CRD) and Variance-Based Loss (VBL)
arXiv Detail & Related papers (2023-05-17T09:37:07Z) - Time series anomaly detection with reconstruction-based state-space
models [10.085100442558828]
We propose a novel unsupervised anomaly detection method for time series data.
A long short-term memory (LSTM)-based encoder-decoder is adopted to represent the mapping between the observation space and the latent space.
Regularization of the latent space places constraints on the states of normal samples, and Mahalanobis distance is used to evaluate the abnormality level.
arXiv Detail & Related papers (2023-03-06T17:52:35Z) - Are we certain it's anomalous? [57.729669157989235]
Anomaly detection in time series is a complex task since anomalies are rare due to highly non-linear temporal correlations.
Here we propose the novel use of Hyperbolic uncertainty for Anomaly Detection (HypAD)
HypAD learns self-supervisedly to reconstruct the input signal.
arXiv Detail & Related papers (2022-11-16T21:31:39Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGAN is an unsupervised anomaly detection approach built on Generative Adversarial Networks (GANs)
To capture the temporal correlations of time series, we use LSTM Recurrent Neural Networks as base models for Generators and Critics.
To demonstrate the performance and generalizability of our approach, we test several anomaly scoring techniques and report the best-suited one.
arXiv Detail & Related papers (2020-09-16T15:52:04Z) - Toward Deep Supervised Anomaly Detection: Reinforcement Learning from
Partially Labeled Anomaly Data [150.9270911031327]
We consider the problem of anomaly detection with a small set of partially labeled anomaly examples and a large-scale unlabeled dataset.
Existing related methods either exclusively fit the limited anomaly examples that typically do not span the entire set of anomalies, or proceed with unsupervised learning from the unlabeled data.
We propose here instead a deep reinforcement learning-based approach that enables an end-to-end optimization of the detection of both labeled and unlabeled anomalies.
arXiv Detail & Related papers (2020-09-15T03:05:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.