論文の概要: Disentanglement Learning via Topology
- arxiv url: http://arxiv.org/abs/2308.12696v4
- Date: Wed, 5 Jun 2024 11:19:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 04:16:10.083614
- Title: Disentanglement Learning via Topology
- Title(参考訳): トポロジーによる解離学習
- Authors: Nikita Balabin, Daria Voronkova, Ilya Trofimov, Evgeny Burnaev, Serguei Barannikov,
- Abstract要約: マルチスケールなトポロジ的損失項を付加することにより,不整合表現を学習するTopDisを提案する。
ディスタングルメントは、ディープラーニングモデルの説明可能性と堅牢性にとって重要なデータ表現の重要な特性である。
提案した位相損失を用いて,訓練されたGANにおいて不整合方向を求める方法を示す。
- 参考スコア(独自算出の注目度): 22.33086299021419
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We propose TopDis (Topological Disentanglement), a method for learning disentangled representations via adding a multi-scale topological loss term. Disentanglement is a crucial property of data representations substantial for the explainability and robustness of deep learning models and a step towards high-level cognition. The state-of-the-art methods are based on VAE and encourage the joint distribution of latent variables to be factorized. We take a different perspective on disentanglement by analyzing topological properties of data manifolds. In particular, we optimize the topological similarity for data manifolds traversals. To the best of our knowledge, our paper is the first one to propose a differentiable topological loss for disentanglement learning. Our experiments have shown that the proposed TopDis loss improves disentanglement scores such as MIG, FactorVAE score, SAP score, and DCI disentanglement score with respect to state-of-the-art results while preserving the reconstruction quality. Our method works in an unsupervised manner, permitting us to apply it to problems without labeled factors of variation. The TopDis loss works even when factors of variation are correlated. Additionally, we show how to use the proposed topological loss to find disentangled directions in a trained GAN.
- Abstract(参考訳): マルチスケールなトポロジ的損失項を付加することにより,不整合表現を学習するTopDis(トポロジカル・ディアンタングルメント)を提案する。
ディスタングルメントは、ディープラーニングモデルの説明可能性と堅牢性、およびハイレベル認知へのステップにとって重要なデータ表現の重要な特性である。
最先端の手法はVAEに基づいており、潜在変数の共分散を分解することを奨励する。
データ多様体のトポロジ的性質を解析することにより、解離について異なる視点を採る。
特に,データ多様体のトポロジ的類似性を最適化する。
我々の知識を最大限に活用するために,本論文は,解離学習のための微分可能な位相損失を提案する最初の論文である。
提案したTopDis損失は,再建品質を保ちながら,MIG,FacterVAEスコア,SAPスコア,DCIアンタングルメントスコアなどのアンタングルメントスコアを改善した。
我々の手法は教師なしの方法で動作し、変動要因をラベル付けせずに問題に適用することができる。
TopDisの損失は、変動の要因が相関している場合でも機能する。
さらに, 提案した位相損失を用いて, 訓練されたGANにおいて, 絡み合った方向を求める方法を示す。
関連論文リスト
- Towards Robust Out-of-Distribution Generalization: Data Augmentation and Neural Architecture Search Approaches [4.577842191730992]
我々は、ディープラーニングのための堅牢なOoD一般化への道を探る。
まず,認識に必須でない特徴間の素早い相関を解消するための,新しい効果的なアプローチを提案する。
次に,OoDシナリオにおけるニューラルアーキテクチャ探索の強化問題について検討する。
論文 参考訳(メタデータ) (2024-10-25T20:50:32Z) - Multi-modal Causal Structure Learning and Root Cause Analysis [67.67578590390907]
根本原因局所化のためのマルチモーダル因果構造学習手法であるMulanを提案する。
ログ選択言語モデルを利用してログ表現学習を行い、ログシーケンスを時系列データに変換する。
また、モダリティの信頼性を評価し、最終因果グラフを共同学習するための新しいキーパフォーマンスインジケータ対応アテンション機構も導入する。
論文 参考訳(メタデータ) (2024-02-04T05:50:38Z) - A topological description of loss surfaces based on Betti Numbers [8.539445673580252]
多層ニューラルネットワークの場合の損失複雑性を評価するためのトポロジカル尺度を提供する。
損失関数やモデルアーキテクチャの特定のバリエーション、例えば$ell$正規化項の追加やフィードフォワードネットワークでの接続のスキップは、特定のケースにおける損失には影響しない。
論文 参考訳(メタデータ) (2024-01-08T11:20:04Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
因果構造を学習することは、通常、スコアまたは独立テストを使用して構造を評価することを伴う探索問題を引き起こす。
本研究では,観測・干渉データから因果構造を予測するため,変分推論モデルを訓練する。
我々のモデルは、実質的な分布シフトの下で頑健な一般化能力を示す。
論文 参考訳(メタデータ) (2022-05-25T17:37:08Z) - Yes, Topology Matters in Decentralized Optimization: Refined Convergence
and Topology Learning under Heterogeneous Data [0.0]
本稿では,分散学習アルゴリズムD-SGD(Decentralized Gradient Descent Algorithm)をデータ不均一性の下で再検討する。
我々は、D-SGDの収束速度において、近隣の不均一性と呼ばれる新しい量によって果たす重要な役割を示す。
エージェント分布のトポロジとヘテロジニティを結合することにより、分散学習におけるこれらの2つの概念間の不十分な相互作用に光を当てる。
論文 参考訳(メタデータ) (2022-04-09T11:29:12Z) - Learning Conditional Invariance through Cycle Consistency [60.85059977904014]
本稿では,データセットの変動の有意義な要因と独立な要因を識別する新しい手法を提案する。
提案手法は,対象プロパティと残りの入力情報に対する2つの別個の潜在部分空間を含む。
我々は,より意味のある因子を同定し,よりスペーサーや解釈可能なモデルに導く合成および分子データについて実証する。
論文 参考訳(メタデータ) (2021-11-25T17:33:12Z) - Topologically penalized regression on manifolds [0.0]
コンパクト多様体 M 上の回帰問題について検討する。
データの基底幾何学と位相を利用するために、回帰タスクは多様体のラプラス・ベルトラミ作用素の最初のいくつかの固有関数に基づいて実行される。
提案された罰則は固有関数または推定関数の下位レベルの集合の位相に基づく。
論文 参考訳(メタデータ) (2021-10-26T14:59:13Z) - Learning Neural Causal Models with Active Interventions [83.44636110899742]
本稿では,データ生成プロセスの根底にある因果構造を素早く識別する能動的介入ターゲット機構を提案する。
本手法は,ランダムな介入ターゲティングと比較して,要求される対話回数を大幅に削減する。
シミュレーションデータから実世界のデータまで,複数のベンチマークにおいて優れた性能を示す。
論文 参考訳(メタデータ) (2021-09-06T13:10:37Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
離散DAG空間上の自己回帰分布をモデル化したパラメトリック変分族を導入する。
実験では,提案した変分後部が真の後部を良好に近似できることを示した。
論文 参考訳(メタデータ) (2021-06-14T17:52:49Z) - Interpreting Deep Neural Networks with Relative Sectional Propagation by
Analyzing Comparative Gradients and Hostile Activations [37.11665902583138]
DNN(Deep Neural Networks)の出力予測を分解するための新しいアトリビューション手法であるRelative Sectional Propagation(RSP)を提案する。
我々は、敵対的因子をターゲットの属性を見つけるのを妨げる要素として定義し、活性化ニューロンの非抑制的な性質を克服するために区別可能な方法でそれを伝播させる。
本手法により,従来の帰属法と比較して,DNNのクラス識別性や活性化ニューロンの詳細な解明により,DNNの予測を分解することができる。
論文 参考訳(メタデータ) (2020-12-07T03:11:07Z) - Learning Causal Semantic Representation for Out-of-Distribution
Prediction [125.38836464226092]
因果推論に基づく因果意味生成モデル(CSG)を提案し,その2つの要因を別々にモデル化する。
CSGはトレーニングデータに適合させることで意味的因子を識別できることを示し、この意味的識別はOOD一般化誤差の有界性を保証する。
論文 参考訳(メタデータ) (2020-11-03T13:16:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。