Single Photon Quantum Ranging: When Sequential Decoding Meets High Dimensional Entanglement
- URL: http://arxiv.org/abs/2308.13045v2
- Date: Wed, 5 Jun 2024 18:41:14 GMT
- Title: Single Photon Quantum Ranging: When Sequential Decoding Meets High Dimensional Entanglement
- Authors: Armanpreet Pannu, Han Liu, Amr S. Helmy, Hesham El Gamal,
- Abstract summary: We consider the quantum ranging problem in the low noise level per mode and low reflectivity regime.
We propose a novel approach that combines high dimensional time-bin entanglement at the transmitter with a carefully constructed sequential decision rule at the detector.
- Score: 5.507681330671019
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider the quantum ranging problem in the low noise level per mode and low reflectivity (high loss) regime. We focus on single photon transmission strategies and propose a novel approach that combines high dimensional time-bin entanglement at the transmitter with a carefully constructed sequential decision rule at the detector. Our analytical results establish the significant performance gains that can be leveraged from this approach in a range of operating parameters, as compared to the single photon classical approach, the two-mode squeezed vacuum ranging scheme proposed earlier, and even the block-based classical scheme. One can attribute this performance gain to 1) the ability of the high dimensional time-bin entangled signaling to offer a very fine range resolution with a single transmitted photon and 2) the ability of the sequential decision rule to minimize the average number of transmitted photon subject to a constraint on the probability of error. While our analysis is limited to the low energy/low noise regime, we conjecture that the proposed approach's superior performance extends to a wider range of scenarios which should motivate further analytical and experimental investigations.
Related papers
- Adaptive Bayesian Single-Shot Quantum Sensing [35.355128149649666]
In variational quantum sensing, a probe quantum system is generated via a parameterized quantum circuit.<n>This paper introduces an adaptive protocol that uses Bayesian inference to optimize the active information gain.
arXiv Detail & Related papers (2025-07-22T11:35:27Z) - Preparation Circuits for Matrix Product States by Classical Variational Disentanglement [0.0]
We study the classical compilation of quantum circuits for the preparation of matrix product states (MPS)
Our algorithm represents a near-term alternative to previous sequential approaches by reverse application of a disentangler.
We show numerical results for ground states of one-dimensional, local Hamiltonians as well as artificially spread out entanglement among multiple qubits.
arXiv Detail & Related papers (2025-04-30T04:13:01Z) - Chernoff Information Bottleneck for Covert Quantum Target Sensing [0.0]
We show how entangled photonic probes paired with photon counting greatly outperform classical coherent transmitters in target detection and ranging.
Our work highlights the great potential of integrating quantum sensing in LiDAR systems to enhance the covert performance.
arXiv Detail & Related papers (2025-04-08T17:05:41Z) - Improved amplitude amplification strategies for the quantum simulation of classical transport problems [41.94295877935867]
We show that oblivious amplitude amplification when applied to non-unitary dynamics leads to a distortion of the quantum state and to an accompanying error in the quantum update.
We also propose an amplification strategy that helps mitigate the distortion error, while still securing an enhanced success probability.
arXiv Detail & Related papers (2025-02-25T15:17:03Z) - Variational Quantum Subspace Construction via Symmetry-Preserving Cost Functions [39.58317527488534]
We propose a variational strategy based on symmetry-preserving cost functions to iteratively construct a reduced subspace for extraction of low-lying energy states.<n>As a proof of concept, we test the proposed algorithms on H4 chain and ring, targeting both the ground-state energy and the charge gap.
arXiv Detail & Related papers (2024-11-25T20:33:47Z) - Differentiable Quantum Computing for Large-scale Linear Control [26.118874431217165]
We introduce an end-to-end quantum algorithm for linear-quadratic control with provable speedups.
Our algorithm, based on a policy gradient method, incorporates a novel quantum subroutine for solving the matrix Lyapunov equation.
arXiv Detail & Related papers (2024-11-03T00:54:33Z) - Entanglement-enhanced quantum sensing via optimal global control [0.0]
We present a deterministic protocol for the preparation of arbitrary entangled states in the symmetric Dicke subspace of $N$ spins coupled to a common cavity mode.
This work opens the way to entanglement-enhanced sensing with cold trapped atoms in cavities and is also relevant for experiments with trapped ions.
arXiv Detail & Related papers (2024-09-19T17:38:09Z) - Recovering complete positivity of non-Markovian quantum dynamics with Choi-proximity regularization [0.5461938536945721]
A relevant problem in the theory of open quantum systems is the lack of complete positivity of dynamical maps obtained after weak-coupling approximations.
We propose a numerical method to cure the complete-positivity violation issue while preserving the non-Markovian features of an arbitrary original dynamical map.
arXiv Detail & Related papers (2023-09-28T10:29:43Z) - Challenges of variational quantum optimization with measurement shot noise [0.0]
We study the scaling of the quantum resources to reach a fixed success probability as the problem size increases.
Our results suggest that hybrid quantum-classical algorithms should possibly avoid a brute force classical outer loop.
arXiv Detail & Related papers (2023-07-31T18:01:15Z) - Entanglement-assisted detection of fading targets via
correlation-to-coherence conversion [4.561601261042468]
We extend the analyses of the correlation-to-displacement (C$rightarrow$D') conversion module to realistic targets.
In particular, the conversion module allows exact and efficient performance evaluation despite the non-Gaussian nature of the quantum channel involved.
arXiv Detail & Related papers (2022-12-15T23:22:10Z) - Suppressing Amplitude Damping in Trapped Ions: Discrete Weak
Measurements for a Non-unitary Probabilistic Noise Filter [62.997667081978825]
We introduce a low-overhead protocol to reverse this degradation.
We present two trapped-ion schemes for the implementation of a non-unitary probabilistic filter against amplitude damping noise.
This filter can be understood as a protocol for single-copy quasi-distillation.
arXiv Detail & Related papers (2022-09-06T18:18:41Z) - Efficient and Flexible Sublabel-Accurate Energy Minimization [62.50191141358778]
We address the problem of minimizing a class of energy functions consisting of data and smoothness terms.
Existing continuous optimization methods can find sublabel-accurate solutions, but they are not efficient for large label spaces.
We propose an efficient sublabel-accurate method that utilizes the best properties of both continuous and discrete models.
arXiv Detail & Related papers (2022-06-20T06:58:55Z) - Noiseless linear amplification in quantum target detection using
Gaussian states [0.0]
Quantum target detection aims to utilise quantum technologies to achieve performances in target detection not possible through purely classical means.
This paper considers the employment of a noiseless linear amplifier at the detection stage of a quantum illumination-based quantum target detection protocol.
arXiv Detail & Related papers (2022-01-07T14:50:42Z) - Anomaly Detection via Controlled Sensing and Deep Active Inference [43.07302992747749]
In this paper, we address the anomaly detection problem where the objective is to find the anomalous processes among a given set of processes.
We develop a sequential selection algorithm that decides which processes to be probed at every instant to detect the anomalies.
Our algorithm is based on active inference which is a general framework to make sequential decisions in order to maximize the notion of free energy.
arXiv Detail & Related papers (2021-05-12T17:54:02Z) - Entanglement-assisted entanglement purification [62.997667081978825]
We present a new class of entanglement-assisted entanglement purification protocols that can generate high-fidelity entanglement from noisy, finite-size ensembles.
Our protocols can deal with arbitrary errors, but are best suited for few errors, and work particularly well for decay noise.
arXiv Detail & Related papers (2020-11-13T19:00:05Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z) - Direct Optimal Control Approach to Laser-Driven Quantum Particle
Dynamics [77.34726150561087]
We propose direct optimal control as a robust and flexible alternative to indirect control theory.
The method is illustrated for the case of laser-driven wavepacket dynamics in a bistable potential.
arXiv Detail & Related papers (2020-10-08T07:59:29Z) - Targeted free energy estimation via learned mappings [66.20146549150475]
Free energy perturbation (FEP) was proposed by Zwanzig more than six decades ago as a method to estimate free energy differences.
FEP suffers from a severe limitation: the requirement of sufficient overlap between distributions.
One strategy to mitigate this problem, called Targeted Free Energy Perturbation, uses a high-dimensional mapping in configuration space to increase overlap.
arXiv Detail & Related papers (2020-02-12T11:10:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.