Supersensitive phase estimation by thermal light in a Kerr-nonlinear interferometric setup
- URL: http://arxiv.org/abs/2308.13267v2
- Date: Wed, 17 Jul 2024 13:23:58 GMT
- Title: Supersensitive phase estimation by thermal light in a Kerr-nonlinear interferometric setup
- Authors: Nilakantha Meher, Eilon Poem, Tomáš Opatrný, Ofer Firstenberg, Gershon Kurizki,
- Abstract summary: We show that supersensitive phase estimation is achievable by textitincoherent, e.g., textitthermal, light injected into a Mach-Zehnder interferometer via a Kerr-nonlinear two-mode coupler.
Phase error is shown to be reduced below $1/barn$, $barn$ being the mean photon number, by thermal input in such interferometric setups.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Estimation of the phase delay between interferometer arms is the core of transmission phase microscopy. Such phase estimation may exhibit an error below the standard quantum (shot-noise) limit, if the input is an entangled two-mode state, e.g., a N00N state. We show, by contrast, that such supersensitive phase estimation (SSPE) is achievable by \textit{incoherent}, e.g., \textit{thermal}, light that is injected into a Mach-Zehnder interferometer via a Kerr-nonlinear two-mode coupler. Phase error is shown to be reduced below $1/\bar{n}$, $\bar{n}$ being the mean photon number, by thermal input in such interferometric setups, even for small nonlinear phase-shifts per photon pair or for significant photon loss. Remarkably, the phase accuracy achievable in such setups by thermal input surpasses that of coherent light with the same $\bar{n}$. Available mode couplers with giant Kerr nonlinearity that stems either from dipole-dipole interactions of Rydberg polaritons in a cold atomic gas, or from cavity-enhanced dispersive atom-field interactions, may exploit such effects to substantially advance interferometric phase microscopy using incoherent, faint light sources.
Related papers
- Strong coupling between a single photon and a photon pair [43.14346227009377]
We report an experimental observation of the strong coupling between a single photon and a photon pair in an ultrastrongly-coupled circuit-QED system.
Results represent a key step towards a new regime of quantum nonlinear optics.
arXiv Detail & Related papers (2024-01-05T10:23:14Z) - Phase sensitivity of spatially broadband high-gain SU(1,1)
interferometers [0.0]
We present a theoretical description of spatially multimode SU (1,1) interferometers operating at low and high parametric gains.
Our approach is based on a step-by-step solution of a system of integro-differential equations for each nonlinear interaction region.
We investigate plane-wave and Gaussian pumping and show that for any parametric gain, there exists a region of phases for which the phase sensitivity surpasses the standard shot-noise scaling.
arXiv Detail & Related papers (2023-07-04T13:51:31Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Swap-test interferometry with biased ancilla noise [0.0]
Heisenberg scaling can be recovered with simple input states.
Simple input states can reach the standard quantum limit of phase estimation.
Complex states require complex states at the input of the interferometer which are difficult to prepare.
arXiv Detail & Related papers (2021-12-05T13:35:31Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - A Scanning 2-Grating Free Electron Mach-Zehnder Interferometer [0.0]
A symmetric binary phase grating and condenser lens system forms two spatially separated, focused probes.
The two paths interfere at a second grating, creating in constructive or destructive interference in output beams.
This interferometer has many notable features: positionable probe beams, large path separations relative to beam width, continuously tunable relative phase between paths.
arXiv Detail & Related papers (2021-04-16T16:49:16Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Spectrally multimode integrated SU(1,1) interferometer [50.591267188664666]
The presented interferometer includes a polarization converter between two photon sources and utilizes a continuous-wave (CW) pump.
We show that this configuration results in almost perfect destructive interference at the output and supersensitivity regions below the classical limit.
arXiv Detail & Related papers (2020-12-07T14:42:54Z) - Position-controlled quantum emitters with reproducible emission
wavelength in hexagonal boron nitride [45.39825093917047]
Single photon emitters (SPEs) in low-dimensional layered materials have recently gained a large interest owing to the auspicious perspectives of integration and extreme miniaturization.
Here, we evidence SPEs in high purity synthetic hexagonal boron nitride (hBN) that can be activated by an electron beam at chosen locations.
Our findings constitute an essential step towards the realization of top-down integrated devices based on identical quantum emitters in 2D materials.
arXiv Detail & Related papers (2020-11-24T17:20:19Z) - Dissipative Josephson effect in coupled nanolasers [0.0]
We study a setup where dissipative interactions do amplify a photonic Josephson current.
We show that the Josephson photocurrent can be used to measure optical phase differences.
In the quantum limit, the accuracy of the two nanolaser interferometer grows with the square of the photon number.
arXiv Detail & Related papers (2020-11-06T10:21:33Z) - Nonlinear phase estimation enhanced by an actively correlated
Mach-Zehnder interferometer [0.4893345190925178]
A nonlinear phase shift is introduced to a Mach-Zehnder interferometer (MZI)
We present a scheme for enhancing the phase sensitivity.
Based on the optimal splitting ratio of beam splitters, the phase sensitivity can beat the standard quantum limit.
arXiv Detail & Related papers (2020-09-17T04:36:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.