Work statistics for Quantum Spin Chains: characterizing quantum phase transitions, benchmarking time evolution, and examining passivity of quantum states
- URL: http://arxiv.org/abs/2308.13366v4
- Date: Mon, 29 Apr 2024 01:40:33 GMT
- Title: Work statistics for Quantum Spin Chains: characterizing quantum phase transitions, benchmarking time evolution, and examining passivity of quantum states
- Authors: Feng-Li Lin, Ching-Yu Huang,
- Abstract summary: We use our numerical method to evaluate the moments/cumulants of work done by sudden quench process on the Ising or Haldane spin chains.
Second, we propose to use the fluctuation theorem as a benchmark indicator for the numerical real-time evolving methods.
Third, we study the passivity of ground and thermal states of quantum spin chains under some cyclic impulse processes.
- Score: 0.023020018305241332
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We study three aspects of work statistics in the context of the fluctuation theorem for the quantum spin chains up to $1024$ sites by numerical methods based on matrix-product states (MPS). First, we use our numerical method to evaluate the moments/cumulants of work done by sudden quench process on the Ising or Haldane spin chains and study their behaviors across the quantum phase transitions. Our results show that, up to the fourth cumulant, the work statistics can indicate the quantum phase transition characterized by the local order parameters but barely for purely topological phase transitions. Second, we propose to use the fluctuation theorem, such as Jarzynski's equality, which relates the real-time correlator to the ratio of the thermal partition functions, as a benchmark indicator for the numerical real-time evolving methods. Third, we study the passivity of ground and thermal states of quantum spin chains under some cyclic impulse processes. We show that the passivity of thermal states and ground states under the hermitian actions are ensured by the second laws and variational principles, respectively, and also verify it by numerical calculations. Besides, we also consider the passivity of ground states under non-hermitian actions, for which the variational principle cannot be applied. Despite that, we find no violation of passivity from our numerical results for all the cases considered in the Ising and Haldane chains. {Overall, we demonstrate that the work statistics for the sudden quench and impulse processes can be evaluated precisely by the numerical MPS method to characterize quantum phase transitions and examine the passivity of quantum states. We also propose to exploit the universality of the fluctuation theorem to benchmark the numerical real-time evolutions in an algorithm and model independent way.
Related papers
- Measurement-induced phase transitions by matrix product states scaling [0.0]
We study the time evolution of long quantum spin chains subjected to continuous monitoring via matrix product states (MPS) at fixed bond dimension.
We show that the error rate displays a phase transition in the monitoring strength, which can be well detected by scaling analysis with relatively low values of bond dimensions.
arXiv Detail & Related papers (2024-02-20T17:22:36Z) - Quasiprobability distribution of work in the quantum Ising model [0.0]
We try to clarify the genuinely quantum features of the process by studying the work quasiprobability for an Ising model in a transverse field.
We examine the critical features related to a quantum phase transition and the role of the initial quantum coherence as useful resource.
arXiv Detail & Related papers (2023-02-22T10:07:49Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Full counting statistics as probe of measurement-induced transitions in
the quantum Ising chain [62.997667081978825]
We show that local projective measurements induce a modification of the out-of-equilibrium probability distribution function of the local magnetization.
In particular we describe how the probability distribution of the former shows different behaviour in the area-law and volume-law regimes.
arXiv Detail & Related papers (2022-12-19T12:34:37Z) - Entanglement Transitions from Stochastic Resetting of Non-Hermitian
Quasiparticles [0.0]
We write down a renewal equation for the statistics of the entanglement entropy and show that depending on the spectrum of quasiparticle decay rates different entanglement scaling can arise and even sharp entanglement phase transitions.
When applied to a Quantum Ising chain where the transverse magnetization is measured by quantum jumps, our theory predicts a critical phase with logarithmic scaling of the entanglement, an area law phase and a continuous phase transition between them, with an effective central charge vanishing as a square root at the transition point.
arXiv Detail & Related papers (2021-11-05T13:38:04Z) - Sampling, rates, and reaction currents through reverse stochastic
quantization on quantum computers [0.0]
We show how to tackle the problem using a suitably quantum computer.
We propose a hybrid quantum-classical sampling scheme to escape local minima.
arXiv Detail & Related papers (2021-08-25T18:04:52Z) - Localization transition induced by programmable disorder [0.24629531282150877]
Many-body localization occurs on a spin-1/2 transverse-field Ising model.
We observe a transition from an ergodic phase to a non-thermal phase for individual energy eigenstates.
We realize the time-independent disordered Ising Hamiltonian experimentally on a D-Wave 2000Q programmable quantum annealer.
arXiv Detail & Related papers (2021-08-15T15:37:32Z) - Experimental verification of fluctuation relations with a quantum
computer [68.8204255655161]
We use a quantum processor to experimentally validate a number of theoretical results in non-equilibrium quantum thermodynamics.
Our experiments constitute the experimental basis for the understanding of the non-equilibrium energetics of quantum computation.
arXiv Detail & Related papers (2021-06-08T14:16:12Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
We simulate a noisy quantum Fourier transform processor with up to 21 qubits.
We take into account microscopic dissipative processes rather than relying on digital error models.
We show that depending on the dissipative mechanisms at play, the choice of input state has a strong impact on the performance of the quantum algorithm.
arXiv Detail & Related papers (2021-02-08T14:55:44Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.