From system models to class models: An in-context learning paradigm
- URL: http://arxiv.org/abs/2308.13380v2
- Date: Wed, 20 Dec 2023 13:42:58 GMT
- Title: From system models to class models: An in-context learning paradigm
- Authors: Marco Forgione, Filippo Pura, Dario Piga
- Abstract summary: We introduce a novel paradigm for system identification, addressing two primary tasks: one-step-ahead prediction and multi-step simulation.
We learn a meta model that represents a class of dynamical systems.
For one-step prediction, a GPT-like decoder-only architecture is utilized, whereas the simulation problem employs an encoder-decoder structure.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Is it possible to understand the intricacies of a dynamical system not solely
from its input/output pattern, but also by observing the behavior of other
systems within the same class? This central question drives the study presented
in this paper.
In response to this query, we introduce a novel paradigm for system
identification, addressing two primary tasks: one-step-ahead prediction and
multi-step simulation. Unlike conventional methods, we do not directly estimate
a model for the specific system. Instead, we learn a meta model that represents
a class of dynamical systems. This meta model is trained on a potentially
infinite stream of synthetic data, generated by simulators whose settings are
randomly extracted from a probability distribution. When provided with a
context from a new system-specifically, an input/output sequence-the meta model
implicitly discerns its dynamics, enabling predictions of its behavior.
The proposed approach harnesses the power of Transformers, renowned for their
\emph{in-context learning} capabilities. For one-step prediction, a GPT-like
decoder-only architecture is utilized, whereas the simulation problem employs
an encoder-decoder structure. Initial experimental results affirmatively answer
our foundational question, opening doors to fresh research avenues in system
identification.
Related papers
- Learning System Dynamics without Forgetting [60.08612207170659]
Predicting trajectories of systems with unknown dynamics is crucial in various research fields, including physics and biology.
We present a novel framework of Mode-switching Graph ODE (MS-GODE), which can continually learn varying dynamics.
We construct a novel benchmark of biological dynamic systems, featuring diverse systems with disparate dynamics.
arXiv Detail & Related papers (2024-06-30T14:55:18Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Cheap and Deterministic Inference for Deep State-Space Models of
Interacting Dynamical Systems [38.23826389188657]
We present a deep state-space model which employs graph neural networks in order to model the underlying interacting dynamical system.
The predictive distribution is multimodal and has the form of a Gaussian mixture model, where the moments of the Gaussian components can be computed via deterministic moment matching rules.
Our moment matching scheme can be exploited for sample-free inference, leading to more efficient and stable training compared to Monte Carlo alternatives.
arXiv Detail & Related papers (2023-05-02T20:30:23Z) - Variational Autoencoding Neural Operators [17.812064311297117]
Unsupervised learning with functional data is an emerging paradigm of machine learning research with applications to computer vision, climate modeling and physical systems.
We present Variational Autoencoding Neural Operators (VANO), a general strategy for making a large class of operator learning architectures act as variational autoencoders.
arXiv Detail & Related papers (2023-02-20T22:34:43Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
We propose a structured latent ODE model that captures system input variations within its latent representation.
Building on a static variable specification, our model learns factors of variation for each input to the system, thus separating the effects of the system inputs in the latent space.
arXiv Detail & Related papers (2022-02-25T20:00:56Z) - Supervised DKRC with Images for Offline System Identification [77.34726150561087]
Modern dynamical systems are becoming increasingly non-linear and complex.
There is a need for a framework to model these systems in a compact and comprehensive representation for prediction and control.
Our approach learns these basis functions using a supervised learning approach.
arXiv Detail & Related papers (2021-09-06T04:39:06Z) - Physics-integrated hybrid framework for model form error identification
in nonlinear dynamical systems [0.0]
For real-life nonlinear systems, the exact form of nonlinearity is often not known and the known governing equations are often based on certain assumptions and approximations.
We propose a novel gray-box modeling approach that not only identifies the model-form error but also utilizes it to improve the predictive capability of the known but approximate governing equation.
arXiv Detail & Related papers (2021-09-01T16:29:21Z) - Using Data Assimilation to Train a Hybrid Forecast System that Combines
Machine-Learning and Knowledge-Based Components [52.77024349608834]
We consider the problem of data-assisted forecasting of chaotic dynamical systems when the available data is noisy partial measurements.
We show that by using partial measurements of the state of the dynamical system, we can train a machine learning model to improve predictions made by an imperfect knowledge-based model.
arXiv Detail & Related papers (2021-02-15T19:56:48Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Generative Temporal Difference Learning for Infinite-Horizon Prediction [101.59882753763888]
We introduce the $gamma$-model, a predictive model of environment dynamics with an infinite probabilistic horizon.
We discuss how its training reflects an inescapable tradeoff between training-time and testing-time compounding errors.
arXiv Detail & Related papers (2020-10-27T17:54:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.