TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time
Series Forecasting
- URL: http://arxiv.org/abs/2308.13386v1
- Date: Fri, 25 Aug 2023 14:01:43 GMT
- Title: TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time
Series Forecasting
- Authors: Yuxiao Luo, Ziyu Lyu, Xingyu Huang
- Abstract summary: Long-term time series forecasting is a vital task and has a wide range of real applications.
Recent methods focus on capturing the underlying patterns from one single domain.
We propose a Time-Frequency Enhanced Decomposed Network (TFDNet) to capture both the long-term underlying patterns and temporal periodicity from the time-frequency domain.
- Score: 2.6361094144982005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Long-term time series forecasting is a vital task and has a wide range of
real applications. Recent methods focus on capturing the underlying patterns
from one single domain (e.g. the time domain or the frequency domain), and have
not taken a holistic view to process long-term time series from the
time-frequency domains. In this paper, we propose a Time-Frequency Enhanced
Decomposed Network (TFDNet) to capture both the long-term underlying patterns
and temporal periodicity from the time-frequency domain. In TFDNet, we devise a
multi-scale time-frequency enhanced encoder backbone and develop two separate
trend and seasonal time-frequency blocks to capture the distinct patterns
within the decomposed trend and seasonal components in multi-resolutions.
Diverse kernel learning strategies of the kernel operations in time-frequency
blocks have been explored, by investigating and incorporating the potential
different channel-wise correlation patterns of multivariate time series.
Experimental evaluation of eight datasets from five benchmark domains
demonstrated that TFDNet is superior to state-of-the-art approaches in both
effectiveness and efficiency.
Related papers
- MFF-FTNet: Multi-scale Feature Fusion across Frequency and Temporal Domains for Time Series Forecasting [18.815152183468673]
Time series forecasting is crucial in many fields, yet current deep learning models struggle with noise, data sparsity, and capturing complex patterns.
This paper presents MFF-FTNet, a novel framework addressing these challenges by combining contrastive learning with multi-scale feature extraction.
Extensive experiments on five real-world datasets demonstrate that MFF-FTNet significantly outperforms state-of-the-art models.
arXiv Detail & Related papers (2024-11-26T12:41:42Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - Multi-Scale Dilated Convolution Network for Long-Term Time Series Forecasting [17.132063819650355]
We propose Multi Scale Dilated Convolution Network (MSDCN) to capture the period and trend characteristics of long time series.
We design different convolution blocks with exponentially growing dilations and varying kernel sizes to sample time series data at different scales.
To validate the effectiveness of the proposed approach, we conduct experiments on eight challenging long-term time series forecasting benchmark datasets.
arXiv Detail & Related papers (2024-05-09T02:11:01Z) - ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNet is an innovative framework that combines a time domain module and a frequency domain module.
We introduce Dominant Harmonic Series Energy Weighting, a novel mechanism for adjusting the weights between the two modules.
Our Complex-valued Spectrum Attention mechanism offers a novel approach to discern the intricate relationships between different frequency combinations.
arXiv Detail & Related papers (2024-04-08T04:41:39Z) - PDETime: Rethinking Long-Term Multivariate Time Series Forecasting from
the perspective of partial differential equations [49.80959046861793]
We present PDETime, a novel LMTF model inspired by the principles of Neural PDE solvers.
Our experimentation across seven diversetemporal real-world LMTF datasets reveals that PDETime adapts effectively to the intrinsic nature of the data.
arXiv Detail & Related papers (2024-02-25T17:39:44Z) - Long-Term Invariant Local Features via Implicit Cross-Domain
Correspondences [79.21515035128832]
We conduct a thorough analysis of the performance of current state-of-the-art feature extraction networks under various domain changes.
We propose a novel data-centric method, Implicit Cross-Domain Correspondences (iCDC)
iCDC represents the same environment with multiple Neural Radiance Fields, each fitting the scene under individual visual domains.
arXiv Detail & Related papers (2023-11-06T18:53:01Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
Key insights can be obtained by discovering lead-lag relationships inherent in the data.
We develop a clustering-driven methodology for robust detection of lead-lag relationships in lagged multi-factor models.
arXiv Detail & Related papers (2023-05-11T10:30:35Z) - TFAD: A Decomposition Time Series Anomaly Detection Architecture with
Time-Frequency Analysis [12.867257563413972]
Time series anomaly detection is a challenging problem due to the complex temporal dependencies and the limited label data.
We propose a Time-Frequency analysis based time series Anomaly Detection model, or TFAD, to exploit both time and frequency domains for performance improvement.
arXiv Detail & Related papers (2022-10-18T09:08:57Z) - TimesNet: Temporal 2D-Variation Modeling for General Time Series
Analysis [80.56913334060404]
Time series analysis is of immense importance in applications, such as weather forecasting, anomaly detection, and action recognition.
Previous methods attempt to accomplish this directly from the 1D time series.
We ravel out the complex temporal variations into the multiple intraperiod- and interperiod-variations.
arXiv Detail & Related papers (2022-10-05T12:19:51Z) - Radflow: A Recurrent, Aggregated, and Decomposable Model for Networks of
Time Series [77.47313102926017]
Radflow is a novel model for networks of time series that influence each other.
It embodies three key ideas: a recurrent neural network to obtain node embeddings that depend on time, the aggregation of the flow of influence from neighboring nodes with multi-head attention, and the multi-layer decomposition of time series.
We show that Radflow can learn different trends and seasonal patterns, that it is robust to missing nodes and edges, and that correlated temporal patterns among network neighbors reflect influence strength.
arXiv Detail & Related papers (2021-02-15T00:57:28Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.