TFKAN: Time-Frequency KAN for Long-Term Time Series Forecasting
- URL: http://arxiv.org/abs/2506.12696v1
- Date: Sun, 15 Jun 2025 02:53:25 GMT
- Title: TFKAN: Time-Frequency KAN for Long-Term Time Series Forecasting
- Authors: Xiaoyan Kui, Canwei Liu, Qinsong Li, Zhipeng Hu, Yangyang Shi, Weixin Si, Beiji Zou,
- Abstract summary: Kolmogorov-Arnold Networks (KANs) are highly effective in long-term time series forecasting.<n>We propose the $textbfT$ime-$textbfF$requency KAN (TFKAN) to integrate information from both time and frequency domains.<n> Experimental results demonstrate that TFKAN consistently outperforms state-of-the-art (SOTA) methods across multiple datasets.
- Score: 16.937153556835423
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Kolmogorov-Arnold Networks (KANs) are highly effective in long-term time series forecasting due to their ability to efficiently represent nonlinear relationships and exhibit local plasticity. However, prior research on KANs has predominantly focused on the time domain, neglecting the potential of the frequency domain. The frequency domain of time series data reveals recurring patterns and periodic behaviors, which complement the temporal information captured in the time domain. To address this gap, we explore the application of KANs in the frequency domain for long-term time series forecasting. By leveraging KANs' adaptive activation functions and their comprehensive representation of signals in the frequency domain, we can more effectively learn global dependencies and periodic patterns. To integrate information from both time and frequency domains, we propose the $\textbf{T}$ime-$\textbf{F}$requency KAN (TFKAN). TFKAN employs a dual-branch architecture that independently processes features from each domain, ensuring that the distinct characteristics of each domain are fully utilized without interference. Additionally, to account for the heterogeneity between domains, we introduce a dimension-adjustment strategy that selectively upscales only in the frequency domain, enhancing efficiency while capturing richer frequency information. Experimental results demonstrate that TFKAN consistently outperforms state-of-the-art (SOTA) methods across multiple datasets. The code is available at https://github.com/LcWave/TFKAN.
Related papers
- Multivariate Long-term Time Series Forecasting with Fourier Neural Filter [55.09326865401653]
We introduce FNF as the backbone and DBD as architecture to provide excellent learning capabilities and optimal learning pathways for spatial-temporal modeling.<n>We show that FNF unifies local time-domain and global frequency-domain information processing within a single backbone that extends naturally to spatial modeling.
arXiv Detail & Related papers (2025-06-10T18:40:20Z) - Learning Latent Spaces for Domain Generalization in Time Series Forecasting [60.29403194508811]
Time series forecasting is vital in many real-world applications, yet developing models that generalize well on unseen relevant domains remains underexplored.<n>We propose a framework for domain generalization in time series forecasting by mining the latent factors that govern temporal dependencies across domains.<n>Our approach uses a decomposition-based architecture with a new Conditional $beta$-Variational Autoencoder (VAE), wherein time series data is first decomposed into trend-cyclical and seasonal components.
arXiv Detail & Related papers (2024-12-15T12:41:53Z) - FTMixer: Frequency and Time Domain Representations Fusion for Time Series Modeling [7.980240191498627]
Time series data can be represented in both the time and frequency domains.
We propose the Frequency and Time Domain Mixer (FTMixer) to harness the strengths of both domains.
arXiv Detail & Related papers (2024-05-24T06:31:46Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
Time Series Forecasting plays a crucial role in various fields such as industrial equipment maintenance, meteorology, energy consumption, traffic flow and financial investment.
Current deep learning-based predictive models often exhibit a significant deviation between their forecasting outcomes and the ground truth.
We propose a novel model Frequency-domain Attention In Two Horizons, which decomposes time series into trend and seasonal components.
arXiv Detail & Related papers (2024-05-22T02:37:02Z) - ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNet is an innovative framework that combines a time domain module and a frequency domain module.
We introduce Dominant Harmonic Series Energy Weighting, a novel mechanism for adjusting the weights between the two modules.
Our Complex-valued Spectrum Attention mechanism offers a novel approach to discern the intricate relationships between different frequency combinations.
arXiv Detail & Related papers (2024-04-08T04:41:39Z) - Time Series Diffusion in the Frequency Domain [54.60573052311487]
We analyze whether representing time series in the frequency domain is a useful inductive bias for score-based diffusion models.
We show that a dual diffusion process occurs in the frequency domain with an important nuance.
We show how to adapt the denoising score matching approach to implement diffusion models in the frequency domain.
arXiv Detail & Related papers (2024-02-08T18:59:05Z) - Long-Term Invariant Local Features via Implicit Cross-Domain
Correspondences [79.21515035128832]
We conduct a thorough analysis of the performance of current state-of-the-art feature extraction networks under various domain changes.
We propose a novel data-centric method, Implicit Cross-Domain Correspondences (iCDC)
iCDC represents the same environment with multiple Neural Radiance Fields, each fitting the scene under individual visual domains.
arXiv Detail & Related papers (2023-11-06T18:53:01Z) - WFTNet: Exploiting Global and Local Periodicity in Long-term Time Series
Forecasting [61.64303388738395]
We propose a Wavelet-Fourier Transform Network (WFTNet) for long-term time series forecasting.
Tests on various time series datasets show WFTNet consistently outperforms other state-of-the-art baselines.
arXiv Detail & Related papers (2023-09-20T13:44:18Z) - Fully-Connected Spatial-Temporal Graph for Multivariate Time-Series Data [50.84488941336865]
We propose a novel method called Fully- Spatial-Temporal Graph Neural Network (FC-STGNN)
For graph construction, we design a decay graph to connect sensors across all timestamps based on their temporal distances.
For graph convolution, we devise FC graph convolution with a moving-pooling GNN layer to effectively capture the ST dependencies for learning effective representations.
arXiv Detail & Related papers (2023-09-11T08:44:07Z) - TFDNet: Time-Frequency Enhanced Decomposed Network for Long-term Time
Series Forecasting [2.6361094144982005]
Long-term time series forecasting is a vital task and has a wide range of real applications.
Recent methods focus on capturing the underlying patterns from one single domain.
We propose a Time-Frequency Enhanced Decomposed Network (TFDNet) to capture both the long-term underlying patterns and temporal periodicity from the time-frequency domain.
arXiv Detail & Related papers (2023-08-25T14:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.