論文の概要: Learning Efficient Representations for Image-Based Patent Retrieval
- arxiv url: http://arxiv.org/abs/2308.13749v1
- Date: Sat, 26 Aug 2023 03:19:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-29 19:27:02.390089
- Title: Learning Efficient Representations for Image-Based Patent Retrieval
- Title(参考訳): 画像に基づく特許検索のための効率的な表現の学習
- Authors: Hongsong Wang and Yuqi Zhang
- Abstract要約: 本稿では,コンテンツに基づく特許検索のためのシンプルで軽量なモデルを提案する。
当社のアプローチは,大規模なベンチマークにおいて,他の方法よりも大幅に優れています。
我々のモデルは、93.5%という驚くほど高いmAPを達成するために、精巧にスケールアップすることができる。
- 参考スコア(独自算出の注目度): 16.323708969088557
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Patent retrieval has been attracting tremendous interest from researchers in
intellectual property and information retrieval communities in the past
decades. However, most existing approaches rely on textual and metadata
information of the patent, and content-based image-based patent retrieval is
rarely investigated. Based on traits of patent drawing images, we present a
simple and lightweight model for this task. Without bells and whistles, this
approach significantly outperforms other counterparts on a large-scale
benchmark and noticeably improves the state-of-the-art by 33.5% with the mean
average precision (mAP) score. Further experiments reveal that this model can
be elaborately scaled up to achieve a surprisingly high mAP of 93.5%. Our
method ranks first in the ECCV 2022 Patent Diagram Image Retrieval Challenge.
- Abstract(参考訳): 特許取得は、過去数十年間、知的財産と情報検索コミュニティの研究者から大きな関心を集めてきた。
しかし、既存のアプローチのほとんどは特許のテキスト情報とメタデータ情報に依存しており、コンテンツベースの画像に基づく特許検索が研究されることはほとんどない。
特許出願画像の特徴に基づいて,この課題に対して単純で軽量なモデルを提案する。
ベルとホイッスルがなければ、このアプローチは大規模ベンチマークで他のベンチマークよりも大幅に優れ、平均的精度(mAP)スコアで最先端の33.5%向上する。
さらなる実験により、このモデルは93.5%という驚くほど高いmAPを達成するために精巧にスケールできることが明らかになった。
本手法はECCV 2022 特許図画像検索チャレンジで第1位である。
関連論文リスト
- Semi-Truths: A Large-Scale Dataset of AI-Augmented Images for Evaluating Robustness of AI-Generated Image detectors [62.63467652611788]
実画像27,600枚、223,400枚、AI拡張画像1,472,700枚を含むSEMI-TRUTHSを紹介する。
それぞれの画像には、検出器のロバスト性の標準化と目標評価のためのメタデータが添付されている。
以上の結果から,現状の検出器は摂動の種類や程度,データ分布,拡張方法に様々な感度を示すことが示唆された。
論文 参考訳(メタデータ) (2024-11-12T01:17:27Z) - Structural Representation Learning and Disentanglement for Evidential Chinese Patent Approval Prediction [19.287231890434718]
本稿では,検索に基づく分類手法を用いて,本課題の先駆的取り組みについて述べる。
本稿では,構造表現学習と絡み合いに着目したDiSPatという新しいフレームワークを提案する。
弊社のフレームワークは、特許承認の予測に関する最先端のベースラインを超越し、明確性の向上も示している。
論文 参考訳(メタデータ) (2024-08-23T05:44:16Z) - Large Language Model Informed Patent Image Retrieval [0.0]
本稿では,特許画像特徴学習のための言語インフォームドな分散型マルチモーダルアプローチを提案する。
提案手法は, mAP +53.3%, Recall@10 +41.8%, MRR@10 +51.9%による画像に基づく特許検索において, 最先端ないし同等の性能を実現する。
論文 参考訳(メタデータ) (2024-04-30T08:45:16Z) - Raising the Bar of AI-generated Image Detection with CLIP [50.345365081177555]
本研究の目的は、AI生成画像の普遍的検出のための事前学習された視覚言語モデル(VLM)の可能性を探ることである。
我々は,CLIP機能に基づく軽量な検出戦略を開発し,その性能を様々な難易度シナリオで検証する。
論文 参考訳(メタデータ) (2023-11-30T21:11:20Z) - Classification of Visualization Types and Perspectives in Patents [9.123089032348311]
我々は、特許画像の可視化タイプと視点の分類に最先端のディープラーニング手法を採用する。
我々は、画像の観点から弱いラベル付きデータを提供するデータセットから、階層的な一連のクラスを導出する。
論文 参考訳(メタデータ) (2023-07-19T21:45:07Z) - Towards Artistic Image Aesthetics Assessment: a Large-scale Dataset and
a New Method [64.40494830113286]
まず、Boldbrush Artistic Image dataset (BAID)という大規模なAIAAデータセットを紹介します。
そこで我々は,芸術的イメージを評価するために,スタイル特異的で汎用的な美的情報を効果的に抽出し,活用する新たな手法であるSAANを提案する。
実験により,提案手法は提案したBAIDデータセット上で既存のIAA手法よりも優れていることが示された。
論文 参考訳(メタデータ) (2023-03-27T12:59:15Z) - IRGen: Generative Modeling for Image Retrieval [82.62022344988993]
本稿では,画像検索を生成モデルの一種として再フレーミングする新しい手法を提案する。
我々は、イメージを意味単位の簡潔なシーケンスに変換するという技術的課題に対処するため、IRGenと呼ばれるモデルを開発した。
本モデルは,広範に使用されている3つの画像検索ベンチマークと200万件のデータセットに対して,最先端の性能を実現する。
論文 参考訳(メタデータ) (2023-03-17T17:07:36Z) - Estimating the Performance of Entity Resolution Algorithms: Lessons
Learned Through PatentsView.org [3.8494315501944736]
本稿では,エンティティ・リゾリューション・アルゴリズムのための新しい評価手法を提案する。
これは米国特許商標庁の特許データ調査ツールであるPatentsView.orgによって動機付けられている。
論文 参考訳(メタデータ) (2022-10-03T21:06:35Z) - A Survey on Sentence Embedding Models Performance for Patent Analysis [0.0]
本稿では,PatentSBERTaアプローチに基づく埋め込みモデルの精度を評価するための標準ライブラリとデータセットを提案する。
patentSBERTa, Bert-for-patents, and TF-IDF Weighted Word Embeddings is the most accuracy for computing sentence embeddeds at the subclass level。
論文 参考訳(メタデータ) (2022-04-28T12:04:42Z) - To be Critical: Self-Calibrated Weakly Supervised Learning for Salient
Object Detection [95.21700830273221]
弱教師付き有色物体検出(WSOD)は,画像レベルのアノテーションを用いた有色度モデルの開発を目的としている。
擬似ラベルとネットワーク予測の相互校正ループを明確に設定し,自己校正学習戦略を提案する。
十分に整合したアノテーションを持つはるかに小さなデータセットであっても、モデルがより優れたパフォーマンスと一般化性を達成するのに役立ちます。
論文 参考訳(メタデータ) (2021-09-04T02:45:22Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
帰納的バイアスは、ラベルなし画像の平坦な集合から学習でき、目に見えるクラスと目に見えないクラスの間で伝達可能な表現としてインスタンス化されることを示す。
具体的には、トランスファー可能な表現を学習するための、新しいパートベース自己教師型表現学習手法を提案する。
我々の手法は印象的な結果をもたらし、それまでの最高の教師なし手法を7.74%、9.24%上回った。
論文 参考訳(メタデータ) (2021-05-25T12:22:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。