On the {\eta} pseudo PT symmetry theory for non-Hermitian Hamiltonians:
time-dependent systems
- URL: http://arxiv.org/abs/2308.13834v4
- Date: Wed, 27 Dec 2023 11:24:33 GMT
- Title: On the {\eta} pseudo PT symmetry theory for non-Hermitian Hamiltonians:
time-dependent systems
- Authors: Mustapha Maamache
- Abstract summary: A non-Hermitian Hamiltonian H is related to its adjoint Hdag via the relation, Hdag=PTHPT.
We propose a derivation of pseudo PT symmetry and eta -pseudo-Hermiticity simultaneously for the time dependent non-Hermitian Hamiltonians.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the context of non-Hermitian quantum mechanics, many systems are known to
possess a pseudo PT symmetry , i.e. the non-Hermitian Hamiltonian H is related
to its adjoint H^{{\dag}} via the relation, H^{{\dag}}=PTHPT . We propose a
derivation of pseudo PT symmetry and {\eta} -pseudo-Hermiticity simultaneously
for the time dependent non-Hermitian Hamiltonians by intoducing a new metric
{\eta}(t)=PT{\eta}(t) that not satisfy the time-dependent quasi-Hermiticity
relation but obeys the Heisenberg evolution equation. Here, we solve the
SU(1,1) time-dependent non-Hermitian Hamiltonian and we construct a
time-dependent solutions by employing this new metric and discuss a concrete
physical applications of our results.
Related papers
- Spontaneous symmetry breaking for nonautonomous Hermitian or non-Hermitian systems [0.0]
We show that if the general antilinear symmetry is unbroken, the Lewis & Riesenfeld phases are real odd functions of time.
For the spontaneously broken regime, imaginary components of the Lewis & Riesenfeld phases arise as even functions of time.
We present an illustrative example of the unbroken and broken $mathcalPT$-symmetry for a time-dependent Hamiltonian modeling the non-Hermitian dynamical Casimir effect.
arXiv Detail & Related papers (2025-04-02T18:13:48Z) - Quantifying non-Hermiticity using single- and many-particle quantum properties [14.37149160708975]
The non-Hermitian paradigm of quantum systems displays salient features drastically different from Hermitian counterparts.
We propose a formalism that quantifies the (dis-)similarity of these right and left ensembles, for single- as well as many-particle quantum properties.
Our findings can be instrumental in unveiling new exotic quantum phases of non-Hermitian quantum many-body systems.
arXiv Detail & Related papers (2024-06-19T13:04:47Z) - Quantum simulation of the pseudo-Hermitian
Landau-Zener-St\"uckelberg-Majorana effect [0.0]
We present a quantum simulation of the time-dependent non-Hermitian non-PT-symmetric Hamiltonian used in a pseudo-Hermitian extension of the Landau-Zener-St"uckelberg-Majorana (LZSM) model.
arXiv Detail & Related papers (2024-01-30T20:53:44Z) - Quantum simulation for time-dependent Hamiltonians -- with applications
to non-autonomous ordinary and partial differential equations [31.223649540164928]
We propose an alternative formalism that turns any non-autonomous unitary dynamical system into an autonomous unitary system.
This makes the simulation with time-dependent Hamiltonians not much more difficult than that of time-independent Hamiltonians.
We show how our new quantum protocol for time-dependent Hamiltonians can be performed in a resource-efficient way and without measurements.
arXiv Detail & Related papers (2023-12-05T14:59:23Z) - A new symmetry theory for non-Hermitian Hamiltonians [0.0]
The eta pseudo PT symmetry theory, denoted by the symbol eta, explores the conditions under which non-Hermitian Hamiltonians can possess real spectra.
arXiv Detail & Related papers (2023-08-25T18:31:45Z) - Construction of Non-Hermitian Parent Hamiltonian from Matrix Product
States [23.215516392012184]
We propose a new method to construct non-Hermitian many-body systems by generalizing the parent Hamiltonian method into non-Hermitian regimes.
We demonstrate this method by constructing a non-Hermitian spin-$1$ model from the asymmetric Affleck-Kennedy-Lieb-Tasaki state.
arXiv Detail & Related papers (2023-01-29T14:13:55Z) - Variational Matrix Product State Approach for Non-Hermitian System Based
on a Companion Hermitian Hamiltonian [15.165363050850857]
We propose an algorithm for solving the ground state of a non-Hermitian system in the matrix product state (MPS) formalism.
If the eigenvalues of the non-Hermitian system are known, the companion Hermitian Hamiltonian can be directly constructed and solved.
arXiv Detail & Related papers (2022-10-26T17:00:28Z) - Entanglement timescale and mixedness in non-Hermitian quantum systems [0.0]
We discuss the short-time perturbative expansion of the linear entropy for finite-dimensional quantum systems.
We find that the non-Hermitian Hamiltonian enhances the short-time dynamics of the linear entropy for the considered input states.
Our results find applications to non-Hermitian quantum sensing, quantum thermodynamics of non-Hermitian systems, and $mathcalPT$-symmetric quantum field theory.
arXiv Detail & Related papers (2022-09-23T15:53:07Z) - Continuous phase transition induced by non-Hermiticity in the quantum
contact process model [44.58985907089892]
How the property of quantum many-body system especially the phase transition will be affected by the non-hermiticity remains unclear.
We show that there is a continuous phase transition induced by the non-hermiticity in QCP.
We observe that the order parameter and susceptibility display infinitely even for finite size system, since non-hermiticity endows universality many-body system with different singular behaviour from classical phase transition.
arXiv Detail & Related papers (2022-09-22T01:11:28Z) - Non-Hermitian Hamiltonian beyond PT-symmetry for time-dependant SU(1,1)
and SU(2) systems -- exact solution and geometric phase in pseudo-invariant
theory [0.0]
A time-dependent non-unitary operator is proposed to construct the non-Hermitian invariant.
The analytical results are exactly in agreement with those of corresponding Hermitian Hamiltonians in the literature.
arXiv Detail & Related papers (2022-07-06T07:07:36Z) - A real expectation value of the time-dependent non-Hermitian
Hamiltonians [0.0]
We solve the time-dependent Schr"odinger equation associated to a time-dependent non-Hermitian Hamiltonian.
The expectation value of the non-Hermitian Hamiltonian in the $mathcalC(tmathcal)PT$ normed states is guaranteed to be real.
arXiv Detail & Related papers (2021-12-27T06:27:33Z) - Information retrieval and eigenstates coalescence in a non-Hermitian
quantum system with anti-$\mathcal{PT}$ symmetry [15.273168396747495]
Non-Hermitian systems with parity-time reversal ($mathcalPT$) or anti-$mathcalPT$ symmetry have attracted a wide range of interest owing to their unique characteristics and counterintuitive phenomena.
We implement a Floquet Hamiltonian of a single qubit with anti-$mathcalPT$ symmetry by periodically driving a dissipative quantum system of a single trapped ion.
arXiv Detail & Related papers (2021-07-27T07:11:32Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - A map between time-dependent and time-independent quantum many-body
Hamiltonians [23.87373187143897]
Given a time-independent Hamiltonian $widetilde H$, one can construct a time-dependent Hamiltonian $H_t$ by means of the gauge transformation $H_t=U_t widetilde H, Udagger_t-i, U_t, partial_t U_tdagger$.
Here $U_t$ is the unitary transformation that relates the solutions of the corresponding Schrodinger equations.
arXiv Detail & Related papers (2020-09-29T08:54:21Z) - Non-Hermitian extension of the Nambu--Jona-Lasinio model in 3+1 and 1+1
dimensions [68.8204255655161]
We present a non-Hermitian PT-symmetric extension of the Nambu--Jona-Lasinio model of quantum chromodynamics in 3+1 and 1+1 dimensions.
We find that in both cases, in 3+1 and in 1+1 dimensions, the inclusion of a non-Hermitian bilinear term can contribute to the generated mass.
arXiv Detail & Related papers (2020-04-08T14:29:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.