論文の概要: Price-Discrimination Game for Distributed Resource Management in Federated Learning
- arxiv url: http://arxiv.org/abs/2308.13838v7
- Date: Sat, 13 Apr 2024 01:41:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-16 23:47:12.290363
- Title: Price-Discrimination Game for Distributed Resource Management in Federated Learning
- Title(参考訳): フェデレーションラーニングにおける分散資源管理のための価格差別ゲーム
- Authors: Han Zhang, Halvin Yang, Guopeng Zhang,
- Abstract要約: FedAvgのようなバニラ連合学習(FL)では、パラメータサーバ(PS)と複数の分散クライアントが典型的な買い手市場を形成する。
本稿では、異なるクライアントに対して同じサービス価格を提供するのではなく、異なるクライアントが提供するサービスの価格を区別することを提案する。
- 参考スコア(独自算出の注目度): 3.724337025141794
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In vanilla federated learning (FL) such as FedAvg, the parameter server (PS) and multiple distributed clients can form a typical buyer's market, where the number of PS/buyers of FL services is far less than the number of clients/sellers. In order to improve the performance of FL and reduce the cost of motivating clients to participate in FL, this paper proposes to differentiate the pricing for services provided by different clients rather than simply providing the same service pricing for different clients. The price is differentiated based on the performance improvements brought to FL and their heterogeneity in computing and communication capabilities. To this end, a price-discrimination game (PDG) is formulated to comprehensively address the distributed resource management problems in FL, including multi-objective trade-off, client selection, and incentive mechanism. As the PDG is a mixed-integer nonlinear programming (MINLP) problem, a distributed semi-heuristic algorithm with low computational complexity and low communication overhead is designed to solve it. The simulation result verifies the effectiveness of the proposed approach.
- Abstract(参考訳): FedAvgのようなバニラ連合学習(FL)では、パラメータサーバ(PS)と複数の分散クライアントが典型的な買い手市場を形成し、FLサービスのPS/購入者数はクライアント/販売者数よりはるかに少ない。
本稿では、FLの性能向上と、FLに参加するクライアントの動機付けコストの低減を図るため、異なるクライアントに対して同じサービス価格を提供するのではなく、異なるクライアントが提供するサービスの価格を区別することを提案する。
FLがもたらす性能改善と、コンピューティングと通信能力における不均一性に基づいて、価格が差別化されている。
この目的のために、多目的トレードオフ、クライアント選択、インセンティブ機構を含むFLの分散リソース管理問題に包括的に対処するために、価格判別ゲーム(PDG)を定式化する。
PDGは混合整数非線形プログラミング(MINLP)問題であるため、計算複雑性が低く通信オーバーヘッドの少ない分散半ヒューリスティックアルゴリズムがこの問題を解決するために設計されている。
シミュレーションの結果,提案手法の有効性を検証した。
関連論文リスト
- Client Orchestration and Cost-Efficient Joint Optimization for
NOMA-Enabled Hierarchical Federated Learning [55.49099125128281]
半同期クラウドモデルアグリゲーションの下で非直交多重アクセス(NOMA)を実現するHFLシステムを提案する。
提案手法は,HFLの性能改善と総コスト削減に関するベンチマークよりも優れていることを示す。
論文 参考訳(メタデータ) (2023-11-03T13:34:44Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
本稿では,クライアントと異なる計算資源をペアリングする,新しい分割フェデレーション学習(SFL)フレームワークを提案する。
グラフエッジ選択問題として,学習遅延の最適化を再構築し,グレディアルゴリズムを提案する。
シミュレーションの結果,提案手法はFLトレーニング速度を大幅に向上し,高い性能を実現することができることがわかった。
論文 参考訳(メタデータ) (2023-08-26T11:10:54Z) - Beyond ADMM: A Unified Client-variance-reduced Adaptive Federated
Learning Framework [82.36466358313025]
我々はFedVRAと呼ばれる原始二重FLアルゴリズムを提案し、このアルゴリズムはグローバルモデルの分散還元レベルとバイアスを適応的に制御することができる。
半教師付き画像分類タスクに基づく実験は,既存の手法よりもFedVRAの方が優れていることを示す。
論文 参考訳(メタデータ) (2022-12-03T03:27:51Z) - FL Games: A Federated Learning Framework for Distribution Shifts [71.98708418753786]
フェデレートラーニングは、サーバのオーケストレーションの下で、クライアント間で分散されたデータの予測モデルをトレーニングすることを目的としている。
本稿では,クライアント間で不変な因果的特徴を学習するフェデレーション学習のためのゲーム理論フレームワークFL GAMESを提案する。
論文 参考訳(メタデータ) (2022-10-31T22:59:03Z) - A-LAQ: Adaptive Lazily Aggregated Quantized Gradient [11.990047476303252]
フェデレートラーニング(FL)は、クライアントに分散したデータで機械学習問題を解決する上で、重要な役割を果たす。
FLでは、クライアントとサーバ間のデータの通信オーバーヘッドを減らすため、各クライアントはローカルデータの代わりにローカルFLパラメータを通信する。
本稿では、FLイテレーション中に複数の通信ビットをアダプティブに割り当てることで、LAQを大幅に拡張するAdaptive Lazily Aggregated Quantized Gradient (A-LAQ)を提案する。
論文 参考訳(メタデータ) (2022-10-31T16:59:58Z) - Learning-Based Client Selection for Federated Learning Services Over
Wireless Networks with Constrained Monetary Budgets [8.285974405319735]
無線ネットワークにおけるマルチフェデレート学習(FL)サービスにおけるデータ品質を考慮した動的クライアント選択問題について検討する。
統合クライアント選択と支払い動作の最適化のために,マルチエージェントハイブリッド深層強化学習に基づくアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-08-08T06:00:07Z) - Combating Client Dropout in Federated Learning via Friend Model
Substitution [8.325089307976654]
Federated Learning(FL)は、データプライバシと通信効率のメリットで知られる、新たな分散機械学習フレームワークである。
本稿では,受動的部分的クライアント参加シナリオについて検討する。
我々は,データ配信に類似したクライアントの友人を検出する新しいアルゴリズムFL-FDMSを開発した。
MNISTとCIFAR-10の実験により、FL-FDMSのFLにおけるクライアントドロップアウト処理における優れた性能が確認された。
論文 参考訳(メタデータ) (2022-05-26T08:34:28Z) - Dynamic Attention-based Communication-Efficient Federated Learning [85.18941440826309]
フェデレートラーニング(FL)は、グローバル機械学習モデルをトレーニングするためのソリューションを提供する。
FLは、クライアントデータの分散が非IIDであるときに性能劣化に悩まされる。
本稿では,この劣化に対処するために,新しい適応トレーニングアルゴリズムであるtextttAdaFL$を提案する。
論文 参考訳(メタデータ) (2021-08-12T14:18:05Z) - A Contract Theory based Incentive Mechanism for Federated Learning [52.24418084256517]
フェデレートラーニング(FL)は、データプライバシ保護機械学習パラダイムとして機能し、分散クライアントによってトレーニングされた協調モデルを実現する。
FLタスクを達成するために、タスクパブリッシャはFLサーバに金銭的なインセンティブを支払う必要があり、FLサーバはFLクライアントにタスクをオフロードする。
タスクがクライアントによってプライベートにトレーニングされているという事実から、FLクライアントに対して適切なインセンティブを設計することは困難である。
論文 参考訳(メタデータ) (2021-08-12T07:30:42Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
ブロックチェーンをFL、すなわちブロックチェーン支援分散学習(BLADE-FL)に統合することで、分散FLフレームワークを提案する。
提案されたBLADE-FLのラウンドでは、各クライアントはトレーニング済みモデルを他のクライアントにブロードキャストし、受信したモデルに基づいてブロックを生成し、次のラウンドのローカルトレーニングの前に生成されたブロックからモデルを集約します。
遅延クライアントがblade-flの学習性能に与える影響を調査し,最適なk,学習パラメータ,遅延クライアントの割合の関係を特徴付ける。
論文 参考訳(メタデータ) (2021-01-18T07:19:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。