Device-Independent Quantum Key Distribution Based on the Mermin-Peres
Magic Square Game
- URL: http://arxiv.org/abs/2308.14037v2
- Date: Fri, 22 Sep 2023 05:54:42 GMT
- Title: Device-Independent Quantum Key Distribution Based on the Mermin-Peres
Magic Square Game
- Authors: Yi-Zheng Zhen and Yingqiu Mao and Yu-Zhe Zhang and Feihu Xu and Barry
C. Sanders
- Abstract summary: Device-independent quantum key distribution (DIQKD) is information-theoretically secure against adversaries who possess a scalable quantum computer and who have supplied malicious key-establishment systems.
We devise a DIQKD scheme based on the quantum nonlocal Mermin-Peres square game: our scheme delivers DIQKD against collective attacks, even with noise.
- Score: 2.511005394556533
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Device-independent quantum key distribution (DIQKD) is
information-theoretically secure against adversaries who possess a scalable
quantum computer and who have supplied malicious key-establishment systems;
however, the DIQKD key rate is currently too low. Consequently, we devise a
DIQKD scheme based on the quantum nonlocal Mermin-Peres magic square game: our
scheme asymptotically delivers DIQKD against collective attacks, even with
noise. Our scheme outperforms DIQKD using the Clauser-Horne-Shimony-Holt game
with respect to the number of game rounds, albeit not number of entangled
pairs, provided that both state visibility and detection efficiency are high
enough.
Related papers
- Practical hybrid PQC-QKD protocols with enhanced security and performance [44.8840598334124]
We develop hybrid protocols by which QKD and PQC inter-operate within a joint quantum-classical network.
In particular, we consider different hybrid designs that may offer enhanced speed and/or security over the individual performance of either approach.
arXiv Detail & Related papers (2024-11-02T00:02:01Z) - European Quantum Ecosystems -- Preparing the Industry for the Quantum Security and Communications Revolution [30.215415766405773]
It is expected that in less than 10 years, this second quantum revolution shall have a significant impact over numerous industries.
Quantum computers threaten the status quo of cybersecurity, due to known quantum algorithms that can break asymmetric encryption.
Two solutions are available: Quantum Key Distribution (QKD) and Post-Quantum Cryptography (PQC)
arXiv Detail & Related papers (2024-08-27T12:56:13Z) - High-rate quantum key distribution exceeding 110 Mb/s [26.392377190417413]
Quantum key distribution (QKD) can provide proven security for secure communication.
Here we report a QKD system that is able to generate key at a record high SKR of 115.8 Mb/s over 10-km standard fibre.
arXiv Detail & Related papers (2023-07-05T15:25:25Z) - Quantum Key Distribution Using a Quantum Emitter in Hexagonal Boron
Nitride [48.97025221755422]
We demonstrate a room temperature, discrete-variable quantum key distribution system using a bright single photon source in hexagonal-boron nitride.
We have generated keys with one million bits length, and demonstrated a secret key of approximately 70,000 bits, at a quantum bit error rate of 6%.
Our work demonstrates the first proof of concept finite-key BB84 QKD system realised with hBN defects.
arXiv Detail & Related papers (2023-02-13T09:38:51Z) - Advances in device-independent quantum key distribution [8.155166479336625]
Device-independent quantum key distribution (DI-QKD) provides the gold standard for secure key exchange.
Recent theoretical and experimental efforts have led to the first proof-of-principle DI-QKD implementations.
arXiv Detail & Related papers (2022-08-26T18:55:40Z) - Efficient room-temperature molecular single-photon sources for quantum
key distribution [51.56795970800138]
Quantum Key Distribution (QKD) allows the distribution of cryptographic keys between multiple users in an information-theoretic secure way.
We introduce and demonstrate a proof-of-concept QKD system exploiting a molecule-based single-photon source operating at room temperature and emitting at 785nm.
arXiv Detail & Related papers (2022-02-25T11:52:10Z) - Overcoming the rate-distance limit of device-independent quantum key
distribution [7.864517207531803]
Device-independent quantum key distribution (DIQKD) exploits the violation of a Bell inequality to extract secure key.
We propose a heralded DIQKD scheme based on entangled coherent states to improve entangling rates.
arXiv Detail & Related papers (2021-03-31T14:58:46Z) - Quantum hacking perceiving for quantum key distribution using temporal
ghost imaging [7.7270491671042425]
Quantum key distribution (QKD) can generate secure key bits between remote users with quantum mechanics.
The most insidious attacks, known as quantum hacking, are the ones with no significant discrepancy of the measurement results.
We propose the method exploring temporal ghost imaging (TGI) scheme to perceive quantum hacking with temporal fingerprints.
arXiv Detail & Related papers (2020-12-28T02:21:09Z) - Upper bounds on device-independent quantum key distribution [4.7840623105240585]
Device-independent quantum key distribution (DIQKD) is a version of QKD with a stronger notion of security.
We study the rate at which DIQKD can be carried out for a given bipartite quantum state distributed between the sender and receiver.
arXiv Detail & Related papers (2020-05-27T17:41:38Z) - Backflash Light as a Security Vulnerability in Quantum Key Distribution
Systems [77.34726150561087]
We review the security vulnerabilities of quantum key distribution (QKD) systems.
We mainly focus on a particular effect known as backflash light, which can be a source of eavesdropping attacks.
arXiv Detail & Related papers (2020-03-23T18:23:12Z) - Reference-Frame-Independent, Measurement-Device-Independent quantum key
distribution using fewer quantum states [1.1242503819703258]
We show that RFI-MDI-QKD can be implemented using fewer quantum states than those of its original proposal.
Compared to the conventional RFI-MDI-QKD where both parties should transmit six quantum states, it significantly simplifies the implementation of the QKD protocol.
arXiv Detail & Related papers (2020-02-05T01:44:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.