Direct initial orbit determination
- URL: http://arxiv.org/abs/2308.14298v1
- Date: Mon, 28 Aug 2023 04:34:50 GMT
- Title: Direct initial orbit determination
- Authors: Chee-Kheng Chng, Trent Jansen-Sturgeon, Timothy Payne, Tat-Jun Chin
- Abstract summary: D-IOD fits the orbital parameters directly on the observed streak images.
We introduce a novel non-linear least-squares objective function that computes the loss between the candidate-orbit-generated streak images and the observed streak images.
- Score: 20.22978490236837
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Initial orbit determination (IOD) is an important early step in the
processing chain that makes sense of and reconciles the multiple optical
observations of a resident space object. IOD methods generally operate on
line-of-sight (LOS) vectors extracted from images of the object, hence the LOS
vectors can be seen as discrete point samples of the raw optical measurements.
Typically, the number of LOS vectors used by an IOD method is much smaller than
the available measurements (\ie, the set of pixel intensity values), hence
current IOD methods arguably under-utilize the rich information present in the
data. In this paper, we propose a \emph{direct} IOD method called D-IOD that
fits the orbital parameters directly on the observed streak images, without
requiring LOS extraction. Since it does not utilize LOS vectors, D-IOD avoids
potential inaccuracies or errors due to an imperfect LOS extraction step. Two
innovations underpin our novel orbit-fitting paradigm: first, we introduce a
novel non-linear least-squares objective function that computes the loss
between the candidate-orbit-generated streak images and the observed streak
images. Second, the objective function is minimized with a gradient descent
approach that is embedded in our proposed optimization strategies designed for
streak images. We demonstrate the effectiveness of D-IOD on a variety of
simulated scenarios and challenging real streak images.
Related papers
- NSD-DIL: Null-Shot Deblurring Using Deep Identity Learning [0.02932486408310998]
We introduce Deep Identity Learning (DIL), a novel learning strategy that includes a dedicated regularization term based on the properties of linear systems.
Since it is purely image-data-independent, we term our model as Null-Shot deblurring Using Deep Identity Learning (NSD-DIL)
Our experiments show that the proposed method outperforms both traditional and deep learning based deblurring methods.
arXiv Detail & Related papers (2024-07-05T18:56:31Z) - Semi-supervised Open-World Object Detection [74.95267079505145]
We introduce a more realistic formulation, named semi-supervised open-world detection (SS-OWOD)
We demonstrate that the performance of the state-of-the-art OWOD detector dramatically deteriorates in the proposed SS-OWOD setting.
Our experiments on 4 datasets including MS COCO, PASCAL, Objects365 and DOTA demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-02-25T07:12:51Z) - Cryo-forum: A framework for orientation recovery with uncertainty
measure with the application in cryo-EM image analysis [0.0]
This paper introduces a novel approach that uses a 10-dimensional feature vector to represent the orientation and applies a Quadratically-Constrained Quadratic Program to derive the predicted orientation as a unit quaternion, supplemented by an uncertainty metric.
Our numerical analysis demonstrates that our methodology effectively recovers orientations from 2D cryo-EM images in an end-to-end manner. Importantly, the inclusion of uncertainty allows for direct clean-up of the dataset at the 3D level.
arXiv Detail & Related papers (2023-07-19T09:09:24Z) - Deep Dynamic Scene Deblurring from Optical Flow [53.625999196063574]
Deblurring can provide visually more pleasant pictures and make photography more convenient.
It is difficult to model the non-uniform blur mathematically.
We develop a convolutional neural network (CNN) to restore the sharp images from the deblurred features.
arXiv Detail & Related papers (2023-01-18T06:37:21Z) - Curvature regularization for Non-line-of-sight Imaging from
Under-sampled Data [5.591221518341613]
Non-line-of-sight (NLOS) imaging aims to reconstruct the three-dimensional hidden scenes from the data measured in the line-of-sight.
We propose novel NLOS reconstruction models based on curvature regularization.
We evaluate the proposed algorithms on both synthetic and real datasets.
arXiv Detail & Related papers (2023-01-01T14:10:43Z) - FRE: A Fast Method For Anomaly Detection And Segmentation [5.0468312081378475]
This paper presents a principled approach for solving the visual anomaly detection and segmentation problem.
We propose the application of linear statistical dimensionality reduction techniques on the intermediate features produced by a pretrained DNN on the training data.
We show that the emphfeature reconstruction error (FRE), which is the $ell$-norm of the difference between the original feature in the high-dimensional space and the pre-image of its low-dimensional reduced embedding, is extremely effective for anomaly detection.
arXiv Detail & Related papers (2022-11-23T01:03:20Z) - Detecting Rotated Objects as Gaussian Distributions and Its 3-D
Generalization [81.29406957201458]
Existing detection methods commonly use a parameterized bounding box (BBox) to model and detect (horizontal) objects.
We argue that such a mechanism has fundamental limitations in building an effective regression loss for rotation detection.
We propose to model the rotated objects as Gaussian distributions.
We extend our approach from 2-D to 3-D with a tailored algorithm design to handle the heading estimation.
arXiv Detail & Related papers (2022-09-22T07:50:48Z) - Event-aided Direct Sparse Odometry [54.602311491827805]
We introduce EDS, a direct monocular visual odometry using events and frames.
Our algorithm leverages the event generation model to track the camera motion in the blind time between frames.
EDS is the first method to perform 6-DOF VO using events and frames with a direct approach.
arXiv Detail & Related papers (2022-04-15T20:40:29Z) - The KFIoU Loss for Rotated Object Detection [115.334070064346]
In this paper, we argue that one effective alternative is to devise an approximate loss who can achieve trend-level alignment with SkewIoU loss.
Specifically, we model the objects as Gaussian distribution and adopt Kalman filter to inherently mimic the mechanism of SkewIoU.
The resulting new loss called KFIoU is easier to implement and works better compared with exact SkewIoU.
arXiv Detail & Related papers (2022-01-29T10:54:57Z) - DARDet: A Dense Anchor-free Rotated Object Detector in Aerial Images [11.45718985586972]
We propose a dense anchor-free rotated object detector (DARDet) for rotated object detection in aerial images.
Our DARDet directly predicts five parameters of rotated boxes at each foreground pixel of feature maps.
Our method achieves state-of-the-art performance on three commonly used aerial objects datasets.
arXiv Detail & Related papers (2021-10-03T15:28:14Z) - SCRDet++: Detecting Small, Cluttered and Rotated Objects via
Instance-Level Feature Denoising and Rotation Loss Smoothing [131.04304632759033]
Small and cluttered objects are common in real-world which are challenging for detection.
In this paper, we first innovatively introduce the idea of denoising to object detection.
Instance-level denoising on the feature map is performed to enhance the detection to small and cluttered objects.
arXiv Detail & Related papers (2020-04-28T06:03:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.