論文の概要: A Comprehensive Overview of Backdoor Attacks in Large Language Models within Communication Networks
- arxiv url: http://arxiv.org/abs/2308.14367v2
- Date: Wed, 6 Sep 2023 08:22:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-19 07:22:30.575555
- Title: A Comprehensive Overview of Backdoor Attacks in Large Language Models within Communication Networks
- Title(参考訳): 通信ネットワークにおける大規模言語モデルにおけるバックドア攻撃の包括的概要
- Authors: Haomiao Yang, Kunlan Xiang, Mengyu Ge, Hongwei Li, Rongxing Lu, Shui Yu,
- Abstract要約: LLM(Large Language Models)は、将来のモバイル通信ネットワークに効率的でインテリジェントなサービスを提供する。
LLMは悪意ある操作を受けたトレーニングデータや処理に晒され、攻撃者がモデルに隠れたバックドアを埋め込む機会を提供する。
バックドア攻撃は、信頼性とセキュリティが最重要である通信ネットワーク内で特に関係している。
- 参考スコア(独自算出の注目度): 28.1095109118807
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Large Language Models (LLMs) are poised to offer efficient and intelligent services for future mobile communication networks, owing to their exceptional capabilities in language comprehension and generation. However, the extremely high data and computational resource requirements for the performance of LLMs compel developers to resort to outsourcing training or utilizing third-party data and computing resources. These strategies may expose the model within the network to maliciously manipulated training data and processing, providing an opportunity for attackers to embed a hidden backdoor into the model, termed a backdoor attack. Backdoor attack in LLMs refers to embedding a hidden backdoor in LLMs that causes the model to perform normally on benign samples but exhibit degraded performance on poisoned ones. This issue is particularly concerning within communication networks where reliability and security are paramount. Despite the extensive research on backdoor attacks, there remains a lack of in-depth exploration specifically within the context of LLMs employed in communication networks, and a systematic review of such attacks is currently absent. In this survey, we systematically propose a taxonomy of backdoor attacks in LLMs as used in communication networks, dividing them into four major categories: input-triggered, prompt-triggered, instruction-triggered, and demonstration-triggered attacks. Furthermore, we conduct a comprehensive analysis of the benchmark datasets. Finally, we identify potential problems and open challenges, offering valuable insights into future research directions for enhancing the security and integrity of LLMs in communication networks.
- Abstract(参考訳): LLM(Large Language Models)は、言語理解と生成における例外的な能力のため、将来のモバイル通信ネットワークに効率的でインテリジェントなサービスを提供することを目指している。
しかし、LLMのパフォーマンスに対する非常に高いデータと計算リソースの要求は、開発者はトレーニングのアウトソーシングや、サードパーティのデータとコンピューティングリソースの利用に頼らざるを得ない。
これらの戦略は、ネットワーク内のモデルを悪質に操作されたトレーニングデータと処理に公開し、攻撃者がバックドア攻撃と呼ばれるモデルに隠れたバックドアを埋め込む機会を提供する。
LLMのバックドア攻撃は、LLMに隠れたバックドアを埋め込むことで、モデルが正常に良性サンプルで実行されるが、有毒なものでは劣化した性能を示す。
この問題は、信頼性とセキュリティが最重要である通信ネットワークにおいて特に問題となる。
バックドア攻撃に関する広範な研究にもかかわらず、通信ネットワークで使用されるLLMの文脈内での詳細な調査は依然として行われておらず、そのような攻撃の体系的なレビューは今のところ行われていない。
本研究では,LLMにおけるバックドア攻撃の分類を,入力トリガー,即時トリガー,命令トリガー,実演トリガーの4つの主要なカテゴリに分類する。
さらに、ベンチマークデータセットの包括的な分析を行う。
最後に、潜在的な問題とオープンな課題を特定し、通信ネットワークにおけるLLMのセキュリティと整合性を高めるための今後の研究の方向性について貴重な洞察を提供する。
関連論文リスト
- When Backdoors Speak: Understanding LLM Backdoor Attacks Through Model-Generated Explanations [58.27927090394458]
大規模言語モデル(LLM)は、バックドア攻撃に対して脆弱である。
本稿では,自然言語説明の新しいレンズを用いたバックドア機能について検討する。
論文 参考訳(メタデータ) (2024-11-19T18:11:36Z) - Mitigating Backdoor Threats to Large Language Models: Advancement and Challenges [46.032173498399885]
大規模言語モデル(LLM)は、Web検索、ヘルスケア、ソフトウェア開発など、さまざまな領域に大きな影響を与えている。
これらのモデルがスケールするにつれて、サイバーセキュリティのリスク、特にバックドア攻撃に対する脆弱性が高まる。
論文 参考訳(メタデータ) (2024-09-30T06:31:36Z) - MEGen: Generative Backdoor in Large Language Models via Model Editing [56.46183024683885]
大規模言語モデル(LLM)は目覚ましい能力を示している。
その強力な生成能力は、様々なクエリや命令に基づいて柔軟な応答を可能にする。
本稿では,最小サイドエフェクトでNLPタスクをカスタマイズしたバックドアを構築することを目的とした,MEGenという編集ベースの生成バックドアを提案する。
論文 参考訳(メタデータ) (2024-08-20T10:44:29Z) - Pathway to Secure and Trustworthy 6G for LLMs: Attacks, Defense, and Opportunities [11.511012020557326]
6Gネットワークの細調整大型言語モデル(LLM)に関連するセキュリティ脆弱性について検討する。
LLMをサービスとして使用する場合の個人データ漏洩につながる可能性のあるダウンストリームタスクに対して,メンバシップ推論攻撃が有効であることを示す。
論文 参考訳(メタデータ) (2024-08-01T17:15:13Z) - A Survey of Attacks on Large Vision-Language Models: Resources, Advances, and Future Trends [78.3201480023907]
LVLM(Large Vision-Language Models)は、多モーダルな理解と推論タスクにまたがる顕著な能力を示す。
LVLMの脆弱性は比較的過小評価されており、日々の使用において潜在的なセキュリティリスクを生じさせる。
本稿では,既存のLVLM攻撃の様々な形態について概説する。
論文 参考訳(メタデータ) (2024-07-10T06:57:58Z) - A Survey of Backdoor Attacks and Defenses on Large Language Models: Implications for Security Measures [28.604839267949114]
人間の言語理解と複雑な問題解決のギャップを埋める大規模言語モデル(LLM)は、いくつかのNLPタスクで最先端のパフォーマンスを達成する。
研究は、言語モデルは潜在的なセキュリティ上の脆弱性、特にバックドア攻撃の影響を受けやすいことを実証している。
本稿では, 微調整手法に着目し, LLMのバックドア攻撃に対する新たな視点について述べる。
論文 参考訳(メタデータ) (2024-06-10T23:54:21Z) - Backdoor Removal for Generative Large Language Models [42.19147076519423]
生成型大規模言語モデル(LLM)は、理解から推論まで、様々な自然言語処理(NLP)タスクを支配している。
悪意のある敵は、毒データをオンラインで公開し、毒データに基づいて事前訓練された被害者のLSMに対するバックドア攻撃を行うことができる。
生成LDMの不要なバックドアマッピングを除去するためにSANDE(Simulate and Eliminate)を提案する。
論文 参考訳(メタデータ) (2024-05-13T11:53:42Z) - Privacy in Large Language Models: Attacks, Defenses and Future Directions [84.73301039987128]
大規模言語モデル(LLM)を対象とした現在のプライバシ攻撃を分析し、敵の想定能力に応じて分類する。
本稿では、これらのプライバシー攻撃に対抗するために開発された防衛戦略について概説する。
論文 参考訳(メタデータ) (2023-10-16T13:23:54Z) - A Survey on Backdoor Attack and Defense in Natural Language Processing [18.29835890570319]
NLP分野におけるバックドア攻撃と防御の総合的な検討を行う。
ベンチマークデータセットを要約し、バックドア攻撃を防ぐために信頼できるシステムを設計するためのオープンな問題を指摘した。
論文 参考訳(メタデータ) (2022-11-22T02:35:12Z) - Backdoor Learning: A Survey [75.59571756777342]
バックドア攻撃はディープニューラルネットワーク(DNN)に隠れたバックドアを埋め込む
バックドア学習は、急速に成長する研究分野である。
本稿では,この領域を包括的に調査する。
論文 参考訳(メタデータ) (2020-07-17T04:09:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。