GADePo: Graph-Assisted Declarative Pooling Transformers for Document-Level Relation Extraction
- URL: http://arxiv.org/abs/2308.14423v4
- Date: Tue, 6 Aug 2024 08:44:47 GMT
- Title: GADePo: Graph-Assisted Declarative Pooling Transformers for Document-Level Relation Extraction
- Authors: Andrei C. Coman, Christos Theodoropoulos, Marie-Francine Moens, James Henderson,
- Abstract summary: We introduce a joint text-graph Transformer model and a graph-assisted declarative pooling (GADePo) specification of the input.
GADePo allows the pooling process to be guided by domain-specific knowledge or desired outcomes but still learned by the Transformer.
We show that our approach yields promising results that are consistently better than those achieved by the hand-coded pooling functions.
- Score: 28.403174369346715
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Document-level relation extraction typically relies on text-based encoders and hand-coded pooling heuristics to aggregate information learned by the encoder. In this paper, we leverage the intrinsic graph processing capabilities of the Transformer model and propose replacing hand-coded pooling methods with new tokens in the input, which are designed to aggregate information via explicit graph relations in the computation of attention weights. We introduce a joint text-graph Transformer model and a graph-assisted declarative pooling (GADePo) specification of the input, which provides explicit and high-level instructions for information aggregation. GADePo allows the pooling process to be guided by domain-specific knowledge or desired outcomes but still learned by the Transformer, leading to more flexible and customisable pooling strategies. We evaluate our method across diverse datasets and models and show that our approach yields promising results that are consistently better than those achieved by the hand-coded pooling functions.
Related papers
- Knowledge Graph Completion with Relation-Aware Anchor Enhancement [50.50944396454757]
We propose a relation-aware anchor enhanced knowledge graph completion method (RAA-KGC)
We first generate anchor entities within the relation-aware neighborhood of the head entity.
Then, by pulling the query embedding towards the neighborhoods of the anchors, it is tuned to be more discriminative for target entity matching.
arXiv Detail & Related papers (2025-04-08T15:22:08Z) - Fast-and-Frugal Text-Graph Transformers are Effective Link Predictors [28.403174369346715]
Link prediction models can benefit from incorporating textual descriptions of entities and relations, enabling fully inductive learning and flexibility in dynamic graphs.
We introduce a Transformer-based approach that effectively integrates textual descriptions with graph structure, reducing the reliance on resource-intensive text encoders.
Our experiments on three challenging datasets show that our Fast-and-Frugal Text-Graph (FnF-TG) Transformers achieve superior performance compared to the previous state-of-the-art methods, while maintaining efficiency and scalability.
arXiv Detail & Related papers (2024-08-13T10:04:29Z) - GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction [3.579132482505273]
Information extraction is an important task in Natural Language Processing (NLP)
We propose a novel approach to this task by formulating it as graph structure learning (GSL)
This formulation allows for better interaction and structure-informed decisions for entity and relation prediction.
arXiv Detail & Related papers (2024-04-18T20:09:37Z) - Relation Rectification in Diffusion Model [64.84686527988809]
We introduce a novel task termed Relation Rectification, aiming to refine the model to accurately represent a given relationship it initially fails to generate.
We propose an innovative solution utilizing a Heterogeneous Graph Convolutional Network (HGCN)
The lightweight HGCN adjusts the text embeddings generated by the text encoder, ensuring the accurate reflection of the textual relation in the embedding space.
arXiv Detail & Related papers (2024-03-29T15:54:36Z) - A Semantic Mention Graph Augmented Model for Document-Level Event Argument Extraction [12.286432133599355]
Document-level Event Argument Extraction (DEAE) aims to identify arguments and their specific roles from an unstructured document.
advanced approaches on DEAE utilize prompt-based methods to guide pre-trained language models (PLMs) in extracting arguments from input documents.
We propose a semantic mention Graph Augmented Model (GAM) to address these two problems in this paper.
arXiv Detail & Related papers (2024-03-12T08:58:07Z) - Zero-shot Composed Text-Image Retrieval [72.43790281036584]
We consider the problem of composed image retrieval (CIR)
It aims to train a model that can fuse multi-modal information, e.g., text and images, to accurately retrieve images that match the query, extending the user's expression ability.
arXiv Detail & Related papers (2023-06-12T17:56:01Z) - LUKE-Graph: A Transformer-based Approach with Gated Relational Graph
Attention for Cloze-style Reading Comprehension [13.173307471333619]
We propose the LUKE-Graph, a model that builds a heterogeneous graph based on the intuitive relationships between entities in a document.
We then use the Attention reading (RGAT) to fuse the graph's reasoning information and the contextual representation encoded by the pre-trained LUKE model.
Experimental results demonstrate that the LUKE-Graph achieves state-of-the-art performance with commonsense reasoning.
arXiv Detail & Related papers (2023-03-12T14:31:44Z) - What does Transformer learn about source code? [26.674180481543264]
transformer-based representation models have achieved state-of-the-art (SOTA) performance in many tasks.
We propose the aggregated attention score, a method to investigate the structural information learned by the transformer.
We also put forward the aggregated attention graph, a new way to extract program graphs from the pre-trained models automatically.
arXiv Detail & Related papers (2022-07-18T09:33:04Z) - Relphormer: Relational Graph Transformer for Knowledge Graph
Representations [25.40961076988176]
We propose a new variant of Transformer for knowledge graph representations dubbed Relphormer.
We propose a novel structure-enhanced self-attention mechanism to encode the relational information and keep the semantic information within entities and relations.
Experimental results on six datasets show that Relphormer can obtain better performance compared with baselines.
arXiv Detail & Related papers (2022-05-22T15:30:18Z) - HETFORMER: Heterogeneous Transformer with Sparse Attention for Long-Text
Extractive Summarization [57.798070356553936]
HETFORMER is a Transformer-based pre-trained model with multi-granularity sparse attentions for extractive summarization.
Experiments on both single- and multi-document summarization tasks show that HETFORMER achieves state-of-the-art performance in Rouge F1.
arXiv Detail & Related papers (2021-10-12T22:42:31Z) - Learning to Synthesize Data for Semantic Parsing [57.190817162674875]
We propose a generative model which models the composition of programs and maps a program to an utterance.
Due to the simplicity of PCFG and pre-trained BART, our generative model can be efficiently learned from existing data at hand.
We evaluate our method in both in-domain and out-of-domain settings of text-to-Query parsing on the standard benchmarks of GeoQuery and Spider.
arXiv Detail & Related papers (2021-04-12T21:24:02Z) - Text Compression-aided Transformer Encoding [77.16960983003271]
We propose explicit and implicit text compression approaches to enhance the Transformer encoding.
backbone information, meaning the gist of the input text, is not specifically focused on.
Our evaluation on benchmark datasets shows that the proposed explicit and implicit text compression approaches improve results in comparison to strong baselines.
arXiv Detail & Related papers (2021-02-11T11:28:39Z) - HittER: Hierarchical Transformers for Knowledge Graph Embeddings [85.93509934018499]
We propose Hitt to learn representations of entities and relations in a complex knowledge graph.
Experimental results show that Hitt achieves new state-of-the-art results on multiple link prediction.
We additionally propose a simple approach to integrate Hitt into BERT and demonstrate its effectiveness on two Freebase factoid answering datasets.
arXiv Detail & Related papers (2020-08-28T18:58:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.