GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction
- URL: http://arxiv.org/abs/2404.12491v1
- Date: Thu, 18 Apr 2024 20:09:37 GMT
- Title: GraphER: A Structure-aware Text-to-Graph Model for Entity and Relation Extraction
- Authors: Urchade Zaratiana, Nadi Tomeh, Niama El Khbir, Pierre Holat, Thierry Charnois,
- Abstract summary: Information extraction is an important task in Natural Language Processing (NLP)
We propose a novel approach to this task by formulating it as graph structure learning (GSL)
This formulation allows for better interaction and structure-informed decisions for entity and relation prediction.
- Score: 3.579132482505273
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Information extraction (IE) is an important task in Natural Language Processing (NLP), involving the extraction of named entities and their relationships from unstructured text. In this paper, we propose a novel approach to this task by formulating it as graph structure learning (GSL). By formulating IE as GSL, we enhance the model's ability to dynamically refine and optimize the graph structure during the extraction process. This formulation allows for better interaction and structure-informed decisions for entity and relation prediction, in contrast to previous models that have separate or untied predictions for these tasks. When compared against state-of-the-art baselines on joint entity and relation extraction benchmarks, our model, GraphER, achieves competitive results.
Related papers
- Advanced RAG Models with Graph Structures: Optimizing Complex Knowledge Reasoning and Text Generation [7.3491970177535]
This study proposes a scheme to process graph structure data by combining graph neural network (GNN)
The results show that the graph-based RAG model proposed in this paper is superior to the traditional generation model in terms of quality, knowledge consistency, and reasoning ability.
arXiv Detail & Related papers (2024-11-06T00:23:55Z) - Graph-Augmented Relation Extraction Model with LLMs-Generated Support Document [7.0421339410165045]
This study introduces a novel approach to sentence-level relation extraction (RE)
It integrates Graph Neural Networks (GNNs) with Large Language Models (LLMs) to generate contextually enriched support documents.
Our experiments, conducted on the CrossRE dataset, demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2024-10-30T20:48:34Z) - Unleashing the Potential of Text-attributed Graphs: Automatic Relation Decomposition via Large Language Models [31.443478448031886]
RoSE (Relation-oriented Semantic Edge-decomposition) is a novel framework that decomposes the graph structure by analyzing raw text attributes.
Our framework significantly enhances node classification performance across various datasets, with improvements of up to 16% on the Wisconsin dataset.
arXiv Detail & Related papers (2024-05-28T20:54:47Z) - Learning to Extract Structured Entities Using Language Models [52.281701191329]
Recent advances in machine learning have significantly impacted the field of information extraction.
We reformulate the task to be entity-centric, enabling the use of diverse metrics.
We contribute to the field by introducing Structured Entity Extraction and proposing the Approximate Entity Set OverlaP metric.
arXiv Detail & Related papers (2024-02-06T22:15:09Z) - Exploiting Contextual Target Attributes for Target Sentiment
Classification [53.30511968323911]
Existing PTLM-based models for TSC can be categorized into two groups: 1) fine-tuning-based models that adopt PTLM as the context encoder; 2) prompting-based models that transfer the classification task to the text/word generation task.
We present a new perspective of leveraging PTLM for TSC: simultaneously leveraging the merits of both language modeling and explicit target-context interactions via contextual target attributes.
arXiv Detail & Related papers (2023-12-21T11:45:28Z) - Enhancing Visually-Rich Document Understanding via Layout Structure
Modeling [91.07963806829237]
We propose GraphLM, a novel document understanding model that injects layout knowledge into the model.
We evaluate our model on various benchmarks, including FUNSD, XFUND and CORD, and achieve state-of-the-art results.
arXiv Detail & Related papers (2023-08-15T13:53:52Z) - Improving Knowledge Graph Entity Alignment with Graph Augmentation [11.1094009195297]
Entity alignment (EA) which links equivalent entities across different knowledge graphs (KGs) plays a crucial role in knowledge fusion.
In recent years, graph neural networks (GNNs) have been successfully applied in many embedding-based EA methods.
We propose graph augmentation to create two graph views for margin-based alignment learning and contrastive entity representation learning.
arXiv Detail & Related papers (2023-04-28T01:22:47Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z) - Named Entity Recognition and Relation Extraction using Enhanced Table
Filling by Contextualized Representations [14.614028420899409]
The proposed method computes representations for entity mentions and long-range dependencies without complicated hand-crafted features or neural-network architectures.
We also adapt a tensor dot-product to predict relation labels all at once without resorting to history-based predictions or search strategies.
Despite its simplicity, the experimental results demonstrate that the proposed method outperforms the state-of-the-art methods on the CoNLL04 and ACE05 English datasets.
arXiv Detail & Related papers (2020-10-15T04:58:23Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.