On the set of reduced states of translation invariant, infinite quantum systems
- URL: http://arxiv.org/abs/2308.14585v2
- Date: Sun, 27 Oct 2024 16:24:28 GMT
- Title: On the set of reduced states of translation invariant, infinite quantum systems
- Authors: Vjosa Blakaj, Michael M. Wolf,
- Abstract summary: We show that the set of reduced states of translation invariant, infinite quantum spin chains is not semialgebraic.
We also provide evidence that additional elementary transcendental functions cannot lead to a finitary description.
- Score: 0.0
- License:
- Abstract: The set of two-body reduced states of translation invariant, infinite quantum spin chains can be approximated from inside and outside using matrix product states and marginals of finite systems, respectively. These lead to hierarchies of algebraic approximations that become tight only in the limit of infinitely many auxiliary variables. We show that this is necessarily so for any algebraic ansatz by proving that the set of reduced states is not semialgebraic. We also provide evidence that additional elementary transcendental functions cannot lead to a finitary description.
Related papers
- Efficient conversion from fermionic Gaussian states to matrix product states [48.225436651971805]
We propose a highly efficient algorithm that converts fermionic Gaussian states to matrix product states.
It can be formulated for finite-size systems without translation invariance, but becomes particularly appealing when applied to infinite systems.
The potential of our method is demonstrated by numerical calculations in two chiral spin liquids.
arXiv Detail & Related papers (2024-08-02T10:15:26Z) - Critical Fermions are Universal Embezzlers [44.99833362998488]
We show that universal embezzlers are ubiquitous in many-body physics.
The same property holds in locally-interacting, dual spin chains via the Jordan-Wigner transformation.
arXiv Detail & Related papers (2024-06-17T17:03:41Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Embezzling entanglement from quantum fields [41.94295877935867]
Embezzlement of entanglement refers to the counterintuitive possibility of extracting entangled quantum states from a reference state of an auxiliary system.
We uncover a deep connection between the operational task of embezzling entanglement and the mathematical classification of von Neumann algebras.
arXiv Detail & Related papers (2024-01-14T13:58:32Z) - Quantum State Transfer in Graphs with Tails [0.0]
We consider quantum state transfer on finite graphs which are attached to infinite paths.
The finite graph represents an operational quantum system for performing useful quantum information tasks.
We show that em perfect state transfer can surprisingly still occur on the finite graph even in the presence of the infinite tails.
arXiv Detail & Related papers (2022-11-27T03:15:02Z) - Non-Abelian symmetry can increase entanglement entropy [62.997667081978825]
We quantify the effects of charges' noncommutation on Page curves.
We show analytically and numerically that the noncommuting-charge case has more entanglement.
arXiv Detail & Related papers (2022-09-28T18:00:00Z) - Entanglement entropy and non-local duality: quantum channels and quantum
algebras [0.0]
Entanglement entropy between local spin degrees of freedom is not generically preserved by the duality.
We show that entanglement of local degrees of freedom is not lost; instead it is transferred to non-local degrees of freedom by the duality transformation.
arXiv Detail & Related papers (2022-07-25T18:00:19Z) - Transcendental properties of entropy-constrained sets [0.0]
We provide a criterion for disproving that a set is semialgebraic based on an analytic continuation of the Gauss map.
We show similar results for related quantities, including the relative entropy, and discuss under which conditions entropy values are transcendental, algebraic, or rational.
arXiv Detail & Related papers (2021-11-19T18:53:15Z) - Dimension-free entanglement detection in multipartite Werner states [1.5771347525430772]
Werner states are multipartite quantum states that are invariant under the diagonal conjugate action of the unitary group.
This paper gives a complete characterization of their entanglement that is independent of the underlying local space.
For every entangled Werner state there exists a dimension-free entanglement witness.
arXiv Detail & Related papers (2021-08-19T14:41:09Z) - Separability and entanglement in superpositions of quantum states [0.0]
We study the superpositions of a pure entangled state and a pure product state, when the amplitudes corresponding to the states appearing in any superposition are nonzero.
All such superpositions produce only entangled states if the initial entangled state has Schmidt rank three or higher.
We find that conditional inseparability of superpositions help in identifying strategies for conclusive local discrimination of shared quantum ensembles.
arXiv Detail & Related papers (2021-08-04T19:48:29Z) - Sub-bosonic (deformed) ladder operators [62.997667081978825]
We present a class of deformed creation and annihilation operators that originates from a rigorous notion of fuzziness.
This leads to deformed, sub-bosonic commutation relations inducing a simple algebraic structure with modified eigenenergies and Fock states.
In addition, we investigate possible consequences of the introduced formalism in quantum field theories, as for instance, deviations from linearity in the dispersion relation for free quasibosons.
arXiv Detail & Related papers (2020-09-10T20:53:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.