Autonomous Underwater Robotic System for Aquaculture Applications
- URL: http://arxiv.org/abs/2308.14762v2
- Date: Fri, 11 Oct 2024 17:54:22 GMT
- Title: Autonomous Underwater Robotic System for Aquaculture Applications
- Authors: Waseem Akram, Muhayyuddin Ahmed, Lakmal Seneviratne, Irfan Hussain,
- Abstract summary: This work aims to develop a robotic-based automatic net defect detection system for aquaculture net pens oriented to on- ROV processing and real-time detection of different aqua-net defects such as biofouling, vegetation, net holes, and plastic.
The proposed system integrates both deep learning-based methods for aqua-net defect detection and feedback control law for the vehicle movement around the aqua-net to obtain a clear sequence of net images and inspect the status of the net via performing the inspection tasks.
- Score: 0.2499907423888049
- License:
- Abstract: Aquaculture is a thriving food-producing sector producing over half of the global fish consumption. However, these aquafarms pose significant challenges such as biofouling, vegetation, and holes within their net pens and have a profound effect on the efficiency and sustainability of fish production. Currently, divers and/or remotely operated vehicles are deployed for inspecting and maintaining aquafarms; this approach is expensive and requires highly skilled human operators. This work aims to develop a robotic-based automatic net defect detection system for aquaculture net pens oriented to on- ROV processing and real-time detection of different aqua-net defects such as biofouling, vegetation, net holes, and plastic. The proposed system integrates both deep learning-based methods for aqua-net defect detection and feedback control law for the vehicle movement around the aqua-net to obtain a clear sequence of net images and inspect the status of the net via performing the inspection tasks. This work contributes to the area of aquaculture inspection, marine robotics, and deep learning aiming to reduce cost, improve quality, and ease of operation.
Related papers
- Towards an Autonomous Surface Vehicle Prototype for Artificial Intelligence Applications of Water Quality Monitoring [68.41400824104953]
This paper presents a vehicle prototype that addresses the use of Artificial Intelligence algorithms and enhanced sensing techniques for water quality monitoring.
The vehicle is fully equipped with high-quality sensors to measure water quality parameters and water depth.
By means of a stereo-camera, it also can detect and locate macro-plastics in real environments.
arXiv Detail & Related papers (2024-10-08T10:35:32Z) - Autonomous Visual Fish Pen Inspections for Estimating the State of Biofouling Buildup Using ROV -- Extended Abstract [0.0]
Fish cage inspections are a necessary maintenance task at any fish farm, be it small scale or industrial.
replacing trained divers who perform regular inspections with autonomous marine vehicles would lower the costs of manpower and remove the risks associated with humans performing underwater inspections.
The aim of this work is to propose a complete solution for automating the said inspection process; from developing an autonomous control algorithm for an ROV, to automatically segmenting images of fish cages, and accurately estimating the state of biofouling.
arXiv Detail & Related papers (2024-09-19T14:36:04Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
We propose a new benchmarking environment for aquatic navigation using recent advances in the integration between game engines and Deep Reinforcement Learning.
Specifically, we focus on PPO, one of the most widely accepted algorithms, and we propose advanced training techniques.
Our empirical evaluation shows that a well-designed combination of these ingredients can achieve promising results.
arXiv Detail & Related papers (2024-05-30T23:20:23Z) - IoT-Based Environmental Control System for Fish Farms with Sensor
Integration and Machine Learning Decision Support [1.3499500088995464]
This research article showcases the power of data-driven decision support in fish farming.
It promises to meet the growing demand for seafood while emphasizing environmental responsibility and economic viability.
arXiv Detail & Related papers (2023-11-07T14:35:16Z) - Evaluating Deep Learning Assisted Automated Aquaculture Net Pens
Inspection Using ROV [0.27309692684728615]
Fish escape from fish farms into the open sea due to net damage.
Traditional inspection system relies on visual inspection by expert divers or ROVs.
This article presents a robotic-based automatic net defect detection system for aquaculture net pens.
arXiv Detail & Related papers (2023-08-26T09:35:49Z) - DeepAqua: Self-Supervised Semantic Segmentation of Wetland Surface Water
Extent with SAR Images using Knowledge Distillation [44.99833362998488]
We present DeepAqua, a self-supervised deep learning model that eliminates the need for manual annotations during the training phase.
We exploit cases where optical- and radar-based water masks coincide, enabling the detection of both open and vegetated water surfaces.
Experimental results show that DeepAqua outperforms other unsupervised methods by improving accuracy by 7%, Intersection Over Union by 27%, and F1 score by 14%.
arXiv Detail & Related papers (2023-05-02T18:06:21Z) - Towards The Creation Of The Future Fish Farm [3.8176219403982126]
Fish farm environments support the care and management of seafood within a controlled environment.
New technologies are constantly being implemented in this sector to enhance efficiency.
This study demonstrates a proof-of-concept to signify the efficiency and usability of the future fish farm.
arXiv Detail & Related papers (2023-01-02T21:41:06Z) - IoT based Smart Water Quality Prediction for Biofloc Aquaculture [1.820324411024166]
Biofloc technology in aquaculture transforms the manual into an advanced system that allows the reuse of unused feed by converting them into microbial protein.
The article presented a system that collects data using sensors, analyzes them using a machine learning model, generates decisions with the help of Artificial Intelligence (AI) and sends notifications to the user.
arXiv Detail & Related papers (2022-07-27T03:00:48Z) - ColibriDoc: An Eye-in-Hand Autonomous Trocar Docking System [46.91300647669861]
We present a platform for autonomous trocar docking that combines computer vision and a robotic setup.
Inspired by the Cuban Colibri (hummingbird) aligning its beak to a flower using only vision, we mount a camera onto the endeffector of a robotic system.
arXiv Detail & Related papers (2021-11-30T13:21:37Z) - Simultaneous Navigation and Construction Benchmarking Environments [73.0706832393065]
We need intelligent robots for mobile construction, the process of navigating in an environment and modifying its structure according to a geometric design.
In this task, a major robot vision and learning challenge is how to exactly achieve the design without GPS.
We benchmark the performance of a handcrafted policy with basic localization and planning, and state-of-the-art deep reinforcement learning methods.
arXiv Detail & Related papers (2021-03-31T00:05:54Z) - Vision-Based Mobile Robotics Obstacle Avoidance With Deep Reinforcement
Learning [49.04274612323564]
Obstacle avoidance is a fundamental and challenging problem for autonomous navigation of mobile robots.
In this paper, we consider the problem of obstacle avoidance in simple 3D environments where the robot has to solely rely on a single monocular camera.
We tackle the obstacle avoidance problem as a data-driven end-to-end deep learning approach.
arXiv Detail & Related papers (2021-03-08T13:05:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.