Ad-Rec: Advanced Feature Interactions to Address Covariate-Shifts in
Recommendation Networks
- URL: http://arxiv.org/abs/2308.14902v1
- Date: Mon, 28 Aug 2023 21:08:06 GMT
- Title: Ad-Rec: Advanced Feature Interactions to Address Covariate-Shifts in
Recommendation Networks
- Authors: Muhammad Adnan, Yassaman Ebrahimzadeh Maboud, Divya Mahajan, Prashant
J. Nair
- Abstract summary: Cross-feature learning is crucial to handle data distribution drift and adapt to changing user behaviour.
This work introduces Ad-Rec, a network that leverages feature interaction techniques to address covariate shifts.
Our approach improves model quality, accelerates convergence, and reduces training time, as measured by the Area Under Curve (AUC) metric.
- Score: 2.016365643222463
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recommendation models are vital in delivering personalized user experiences
by leveraging the correlation between multiple input features. However, deep
learning-based recommendation models often face challenges due to evolving user
behaviour and item features, leading to covariate shifts. Effective
cross-feature learning is crucial to handle data distribution drift and
adapting to changing user behaviour. Traditional feature interaction techniques
have limitations in achieving optimal performance in this context.
This work introduces Ad-Rec, an advanced network that leverages feature
interaction techniques to address covariate shifts. This helps eliminate
irrelevant interactions in recommendation tasks. Ad-Rec leverages masked
transformers to enable the learning of higher-order cross-features while
mitigating the impact of data distribution drift. Our approach improves model
quality, accelerates convergence, and reduces training time, as measured by the
Area Under Curve (AUC) metric. We demonstrate the scalability of Ad-Rec and its
ability to achieve superior model quality through comprehensive ablation
studies.
Related papers
- Leveraging Variation Theory in Counterfactual Data Augmentation for Optimized Active Learning [19.962212551963383]
Active Learning (AL) allows models to learn interactively from user feedback.
This paper introduces a counterfactual data augmentation approach to AL.
arXiv Detail & Related papers (2024-08-07T14:55:04Z) - PairCFR: Enhancing Model Training on Paired Counterfactually Augmented Data through Contrastive Learning [49.60634126342945]
Counterfactually Augmented Data (CAD) involves creating new data samples by applying minimal yet sufficient modifications to flip the label of existing data samples to other classes.
Recent research reveals that training with CAD may lead models to overly focus on modified features while ignoring other important contextual information.
We employ contrastive learning to promote global feature alignment in addition to learning counterfactual clues.
arXiv Detail & Related papers (2024-06-09T07:29:55Z) - AdaptSSR: Pre-training User Model with Augmentation-Adaptive
Self-Supervised Ranking [19.1857792382924]
We propose Augmentation-Supervised Ranking (AdaptSSR) to replace the contrastive learning task.
We adopt a multiple pairwise ranking loss which trains the user model to capture the similarity orders between the implicitly augmented view, the explicitly augmented view, and views from other users.
Experiments on both public and industrial datasets with six downstream tasks verify the effectiveness of AdaptSSR.
arXiv Detail & Related papers (2023-10-15T02:19:28Z) - Multi-behavior Self-supervised Learning for Recommendation [36.42241501002167]
We propose a Multi-Behavior Self-Supervised Learning (MBSSL) framework together with an adaptive optimization method.
Specifically, we devise a behavior-aware graph neural network incorporating the self-attention mechanism to capture behavior multiplicity and dependencies.
Experiments on five real-world datasets demonstrate the consistent improvements obtained by MBSSL over ten state-of-the art (SOTA) baselines.
arXiv Detail & Related papers (2023-05-22T15:57:32Z) - Implicit Counterfactual Data Augmentation for Robust Learning [24.795542869249154]
This study proposes an Implicit Counterfactual Data Augmentation method to remove spurious correlations and make stable predictions.
Experiments have been conducted across various biased learning scenarios covering both image and text datasets.
arXiv Detail & Related papers (2023-04-26T10:36:40Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Beyond Transfer Learning: Co-finetuning for Action Localisation [64.07196901012153]
We propose co-finetuning -- simultaneously training a single model on multiple upstream'' and downstream'' tasks.
We demonstrate that co-finetuning outperforms traditional transfer learning when using the same total amount of data.
We also show how we can easily extend our approach to multiple upstream'' datasets to further improve performance.
arXiv Detail & Related papers (2022-07-08T10:25:47Z) - Contrastive Self-supervised Sequential Recommendation with Robust
Augmentation [101.25762166231904]
Sequential Recommendationdescribes a set of techniques to model dynamic user behavior in order to predict future interactions in sequential user data.
Old and new issues remain, including data-sparsity and noisy data.
We propose Contrastive Self-Supervised Learning for sequential Recommendation (CoSeRec)
arXiv Detail & Related papers (2021-08-14T07:15:25Z) - Guided Interpolation for Adversarial Training [73.91493448651306]
As training progresses, the training data becomes less and less attackable, undermining the robustness enhancement.
We propose the guided framework (GIF), which employs the previous epoch's meta information to guide the data's adversarial variants.
Compared with the vanilla mixup, the GIF can provide a higher ratio of attackable data, which is beneficial to the robustness enhancement.
arXiv Detail & Related papers (2021-02-15T03:55:08Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.