LLM-Based Human-Robot Collaboration Framework for Manipulation Tasks
- URL: http://arxiv.org/abs/2308.14972v1
- Date: Tue, 29 Aug 2023 01:54:49 GMT
- Title: LLM-Based Human-Robot Collaboration Framework for Manipulation Tasks
- Authors: Haokun Liu, Yaonan Zhu, Kenji Kato, Izumi Kondo, Tadayoshi Aoyama, and
Yasuhisa Hasegawa
- Abstract summary: This paper presents a novel approach to enhance autonomous robotic manipulation using the Large Language Model (LLM) for logical inference.
The proposed system combines the advantage of LLM with YOLO-based environmental perception to enable robots to autonomously make reasonable decisions.
- Score: 4.4589894340260585
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper presents a novel approach to enhance autonomous robotic
manipulation using the Large Language Model (LLM) for logical inference,
converting high-level language commands into sequences of executable motion
functions. The proposed system combines the advantage of LLM with YOLO-based
environmental perception to enable robots to autonomously make reasonable
decisions and task planning based on the given commands. Additionally, to
address the potential inaccuracies or illogical actions arising from LLM, a
combination of teleoperation and Dynamic Movement Primitives (DMP) is employed
for action correction. This integration aims to improve the practicality and
generalizability of the LLM-based human-robot collaboration system.
Related papers
- MALMM: Multi-Agent Large Language Models for Zero-Shot Robotics Manipulation [52.739500459903724]
Large Language Models (LLMs) have demonstrated remarkable planning abilities across various domains, including robotics manipulation and navigation.
We propose a novel multi-agent LLM framework that distributes high-level planning and low-level control code generation across specialized LLM agents.
We evaluate our approach on nine RLBench tasks, including long-horizon tasks, and demonstrate its ability to solve robotics manipulation in a zero-shot setting.
arXiv Detail & Related papers (2024-11-26T17:53:44Z) - DeeR-VLA: Dynamic Inference of Multimodal Large Language Models for Efficient Robot Execution [114.61347672265076]
Development of MLLMs for real-world robots is challenging due to the typically limited computation and memory capacities available on robotic platforms.
We propose a Dynamic Early-Exit Framework for Robotic Vision-Language-Action Model (DeeR) that automatically adjusts the size of the activated MLLM.
DeeR demonstrates significant reductions in computational costs of LLM by 5.2-6.5x and GPU memory of LLM by 2-6x without compromising performance.
arXiv Detail & Related papers (2024-11-04T18:26:08Z) - Autonomous Behavior Planning For Humanoid Loco-manipulation Through Grounded Language Model [6.9268843428933025]
Large language models (LLMs) have demonstrated powerful planning and reasoning capabilities for comprehension and processing of semantic information.
We propose a novel language-model based framework that enables robots to autonomously plan behaviors and low-level execution under given textual instructions.
arXiv Detail & Related papers (2024-08-15T17:33:32Z) - Enhancing the LLM-Based Robot Manipulation Through Human-Robot Collaboration [4.2460673279562755]
Large Language Models (LLMs) are gaining popularity in the field of robotics.
This paper proposes a novel approach to enhance the performance of LLM-based autonomous manipulation through Human-Robot Collaboration (HRC)
The approach involves using a prompted GPT-4 language model to decompose high-level language commands into sequences of motions that can be executed by the robot.
arXiv Detail & Related papers (2024-06-20T08:23:49Z) - LLM3:Large Language Model-based Task and Motion Planning with Motion Failure Reasoning [78.2390460278551]
Conventional Task and Motion Planning (TAMP) approaches rely on manually crafted interfaces connecting symbolic task planning with continuous motion generation.
Here, we present LLM3, a novel Large Language Model (LLM)-based TAMP framework featuring a domain-independent interface.
Specifically, we leverage the powerful reasoning and planning capabilities of pre-trained LLMs to propose symbolic action sequences and select continuous action parameters for motion planning.
arXiv Detail & Related papers (2024-03-18T08:03:47Z) - Large Language Model-based Human-Agent Collaboration for Complex Task
Solving [94.3914058341565]
We introduce the problem of Large Language Models (LLMs)-based human-agent collaboration for complex task-solving.
We propose a Reinforcement Learning-based Human-Agent Collaboration method, ReHAC.
This approach includes a policy model designed to determine the most opportune stages for human intervention within the task-solving process.
arXiv Detail & Related papers (2024-02-20T11:03:36Z) - InCoRo: In-Context Learning for Robotics Control with Feedback Loops [4.702566749969133]
InCoRo is a system that uses a classical robotic feedback loop composed of an LLM controller, a scene understanding unit, and a robot.
We highlight the generalization capabilities of our system and show that InCoRo surpasses the prior art in terms of the success rate.
This research paves the way towards building reliable, efficient, intelligent autonomous systems that adapt to dynamic environments.
arXiv Detail & Related papers (2024-02-07T19:01:11Z) - LLMind: Orchestrating AI and IoT with LLM for Complex Task Execution [18.816077341295628]
We present LLMind, a task-oriented AI framework that enables effective collaboration among IoT devices.
Inspired by the functional specialization theory of the brain, our framework integrates an LLM with domain-specific AI modules.
Complex tasks, which may involve collaborations of multiple domain-specific AI modules and IoT devices, are executed through a control script.
arXiv Detail & Related papers (2023-12-14T14:57:58Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - LanguageMPC: Large Language Models as Decision Makers for Autonomous
Driving [87.1164964709168]
This work employs Large Language Models (LLMs) as a decision-making component for complex autonomous driving scenarios.
Extensive experiments demonstrate that our proposed method not only consistently surpasses baseline approaches in single-vehicle tasks, but also helps handle complex driving behaviors even multi-vehicle coordination.
arXiv Detail & Related papers (2023-10-04T17:59:49Z) - Language to Rewards for Robotic Skill Synthesis [37.21434094015743]
We introduce a new paradigm that harnesses large language models (LLMs) to define reward parameters that can be optimized and accomplish variety of robotic tasks.
Using reward as the intermediate interface generated by LLMs, we can effectively bridge the gap between high-level language instructions or corrections to low-level robot actions.
arXiv Detail & Related papers (2023-06-14T17:27:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.