論文の概要: How Faithful are Self-Explainable GNNs?
- arxiv url: http://arxiv.org/abs/2308.15096v1
- Date: Tue, 29 Aug 2023 08:04:45 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-30 15:20:53.770874
- Title: How Faithful are Self-Explainable GNNs?
- Title(参考訳): 自己説明可能なGNNはどの程度忠実か?
- Authors: Marc Christiansen, Lea Villadsen, Zhiqiang Zhong, Stefano Teso, Davide
Mottin
- Abstract要約: 自己説明可能なグラフニューラルネットワーク(GNN)は、グラフデータのコンテキストで同じことを実現することを目的としている。
我々は,複数の自己説明可能なGNNの忠実度を,異なる信頼度尺度を用いて分析する。
- 参考スコア(独自算出の注目度): 14.618208661185365
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-explainable deep neural networks are a recent class of models that can
output ante-hoc local explanations that are faithful to the model's reasoning,
and as such represent a step forward toward filling the gap between
expressiveness and interpretability. Self-explainable graph neural networks
(GNNs) aim at achieving the same in the context of graph data. This begs the
question: do these models fulfill their implicit guarantees in terms of
faithfulness? In this extended abstract, we analyze the faithfulness of several
self-explainable GNNs using different measures of faithfulness, identify
several limitations -- both in the models themselves and in the evaluation
metrics -- and outline possible ways forward.
- Abstract(参考訳): 自己説明可能なディープニューラルネットワークは、モデルの推論に忠実なアントホックな局所的説明を出力できる最近のモデルのクラスであり、表現力と解釈可能性の間のギャップを埋めるための一歩である。
自己説明型グラフニューラルネットワーク(gnns)は、グラフデータのコンテキストでこれを達成することを目指している。
これらのモデルは、忠実性の観点から暗黙の保証を満たしているか?
この拡張要約では、異なる忠実性の尺度を用いて、複数の自己説明可能なgnnの忠実性を分析し、モデル自体と評価メトリクスの両方においていくつかの制限を特定し、今後の方向性を概説する。
関連論文リスト
- Towards Few-shot Self-explaining Graph Neural Networks [16.085176689122036]
数ショット設定で予測をサポートするための説明を生成する新しいフレームワークを提案する。
MSE-GNNは説明器と予測器からなる2段階の自己説明構造を採用している。
MSE-GNNは、高品質な説明を生成しながら予測タスクにおいて優れた性能が得られることを示す。
論文 参考訳(メタデータ) (2024-08-14T07:31:11Z) - Explainable Graph Neural Networks Under Fire [69.15708723429307]
グラフニューラルネットワーク(GNN)は通常、複雑な計算挙動とグラフの抽象的性質のために解釈性に欠ける。
ほとんどのGNN説明法は、ポストホックな方法で動作し、重要なエッジと/またはノードの小さなサブセットの形で説明を提供する。
本稿では,これらの説明が信頼できないことを実証する。GNNの一般的な説明手法は,敵対的摂動に強い影響を受けやすいことが判明した。
論文 参考訳(メタデータ) (2024-06-10T16:09:16Z) - Towards Robust Fidelity for Evaluating Explainability of Graph Neural Networks [32.345435955298825]
グラフニューラルネットワーク(GNN)は、グラフノード間のメッセージパッシングを介してグラフィカルデータの依存性構造を利用するニューラルネットワークである。
GNN説明可能性の研究における主な課題は、これらの説明機能の性能を評価するための忠実度尺度を提供することである。
本稿では,この基礎的課題について考察し,その限界を浮き彫りにする。
論文 参考訳(メタデータ) (2023-10-03T06:25:14Z) - Neural Additive Models for Location Scale and Shape: A Framework for
Interpretable Neural Regression Beyond the Mean [1.0923877073891446]
ディープニューラルネットワーク(DNN)は、様々なタスクで非常に効果的であることが証明されている。
この成功にもかかわらず、DNNの内部構造はしばしば透明ではない。
この解釈可能性の欠如は、本質的に解釈可能なニューラルネットワークの研究の増加につながった。
論文 参考訳(メタデータ) (2023-01-27T17:06:13Z) - Towards Prototype-Based Self-Explainable Graph Neural Network [37.90997236795843]
本稿では,プロトタイプベースの自己説明可能なGNNを学習し,正確な予測とプロトタイプベースの予測説明を同時に行うという,新たな課題について考察する。
学習したプロトタイプは、テストインスタンスの予測とインスタンスレベルの説明を同時に行うためにも使用される。
論文 参考訳(メタデータ) (2022-10-05T00:47:42Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - Discovering Invariant Rationales for Graph Neural Networks [104.61908788639052]
グラフニューラルネットワーク(GNN)の固有の解釈可能性とは、入力グラフの特徴の小さなサブセットを見つけることである。
本稿では,本質的に解釈可能なGNNを構築するために,不変理性(DIR)を発見するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2022-01-30T16:43:40Z) - Towards Self-Explainable Graph Neural Network [24.18369781999988]
グラフニューラルネットワーク(GNN)は、ディープニューラルネットワークをグラフ構造化データに一般化する。
GNNには説明責任がないため、モデルの透明性を求めるシナリオでは採用が制限される。
そこで本稿では,各未ラベルノードに対して$K$-nearestラベル付きノードを探索し,説明可能なノード分類を提案する。
論文 参考訳(メタデータ) (2021-08-26T22:45:11Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z) - Neural Additive Models: Interpretable Machine Learning with Neural Nets [77.66871378302774]
ディープニューラルネットワーク(DNN)は、さまざまなタスクにおいて優れたパフォーマンスを達成した強力なブラックボックス予測器である。
本稿では、DNNの表現性と一般化した加法モデルの固有知性を組み合わせたニューラル付加モデル(NAM)を提案する。
NAMは、ニューラルネットワークの線形結合を学び、それぞれが単一の入力機能に付随する。
論文 参考訳(メタデータ) (2020-04-29T01:28:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。