論文の概要: Towards Few-shot Self-explaining Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2408.07340v1
- Date: Wed, 14 Aug 2024 07:31:11 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-15 14:13:57.274879
- Title: Towards Few-shot Self-explaining Graph Neural Networks
- Title(参考訳): 自己説明型グラフニューラルネットワークの実現に向けて
- Authors: Jingyu Peng, Qi Liu, Linan Yue, Zaixi Zhang, Kai Zhang, Yunhao Sha,
- Abstract要約: 数ショット設定で予測をサポートするための説明を生成する新しいフレームワークを提案する。
MSE-GNNは説明器と予測器からなる2段階の自己説明構造を採用している。
MSE-GNNは、高品質な説明を生成しながら予測タスクにおいて優れた性能が得られることを示す。
- 参考スコア(独自算出の注目度): 16.085176689122036
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in Graph Neural Networks (GNNs) have spurred an upsurge of research dedicated to enhancing the explainability of GNNs, particularly in critical domains such as medicine. A promising approach is the self-explaining method, which outputs explanations along with predictions. However, existing self-explaining models require a large amount of training data, rendering them unavailable in few-shot scenarios. To address this challenge, in this paper, we propose a Meta-learned Self-Explaining GNN (MSE-GNN), a novel framework that generates explanations to support predictions in few-shot settings. MSE-GNN adopts a two-stage self-explaining structure, consisting of an explainer and a predictor. Specifically, the explainer first imitates the attention mechanism of humans to select the explanation subgraph, whereby attention is naturally paid to regions containing important characteristics. Subsequently, the predictor mimics the decision-making process, which makes predictions based on the generated explanation. Moreover, with a novel meta-training process and a designed mechanism that exploits task information, MSE-GNN can achieve remarkable performance on new few-shot tasks. Extensive experimental results on four datasets demonstrate that MSE-GNN can achieve superior performance on prediction tasks while generating high-quality explanations compared with existing methods. The code is publicly available at https://github.com/jypeng28/MSE-GNN.
- Abstract(参考訳): グラフニューラルネットワーク(GNN)の最近の進歩は、特に医学などの重要な領域において、GNNの説明可能性を高めるための研究が急増している。
有望なアプローチは自己説明法であり、予測とともに説明を出力する。
しかし、既存の自己説明モデルは大量のトレーニングデータを必要としており、数ショットのシナリオでは利用できない。
本稿では,メタ学習型自己説明型GNN(MSE-GNN)を提案する。
MSE-GNNは説明器と予測器からなる2段階の自己説明構造を採用している。
具体的には、まず人間の注意機構を模倣して説明文を選択し、重要な特徴を有する領域に自然に注意を払う。
その後、予測者は、生成された説明に基づいて予測を行う決定過程を模倣する。
さらに,タスク情報を活用する新しいメタトレーニングプロセスと設計機構により,MSE-GNNは,新しい数発タスクにおいて顕著なパフォーマンスを実現することができる。
4つのデータセットの大規模な実験結果から、MSE-GNNは予測タスクにおいて、既存の手法と比較して高品質な説明を生成しながら、優れた性能を達成できることが示されている。
コードはhttps://github.com/jypeng28/MSE-GNNで公開されている。
関連論文リスト
- SES: Bridging the Gap Between Explainability and Prediction of Graph Neural Networks [13.655670509818144]
本稿では、説明可能性と予測のギャップを埋める自己説明型自己教師型グラフニューラルネットワーク(SES)を提案する。
SESは説明可能なトレーニングと予測学習の2つのプロセスから構成される。
論文 参考訳(メタデータ) (2024-07-16T03:46:57Z) - DEGREE: Decomposition Based Explanation For Graph Neural Networks [55.38873296761104]
我々は,GNN予測に対する忠実な説明を提供するためにDGREEを提案する。
GNNの情報生成と集約機構を分解することにより、DECREEは入力グラフの特定のコンポーネントのコントリビューションを最終的な予測に追跡することができる。
また,従来の手法で見過ごされるグラフノード間の複雑な相互作用を明らかにするために,サブグラフレベルの解釈アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-05-22T10:29:52Z) - Towards Prototype-Based Self-Explainable Graph Neural Network [37.90997236795843]
本稿では,プロトタイプベースの自己説明可能なGNNを学習し,正確な予測とプロトタイプベースの予測説明を同時に行うという,新たな課題について考察する。
学習したプロトタイプは、テストインスタンスの予測とインスタンスレベルの説明を同時に行うためにも使用される。
論文 参考訳(メタデータ) (2022-10-05T00:47:42Z) - Task-Agnostic Graph Explanations [50.17442349253348]
グラフニューラルネットワーク(GNN)は、グラフ構造化データをエンコードする強力なツールとして登場した。
既存の学習ベースのGNN説明手法は、訓練においてタスク固有である。
本稿では、下流タスクの知識のない自己監督下で訓練されたタスク非依存のGNN Explainer(TAGE)を提案する。
論文 参考訳(メタデータ) (2022-02-16T21:11:47Z) - Towards the Explanation of Graph Neural Networks in Digital Pathology
with Information Flows [67.23405590815602]
グラフニューラルネットワーク(GNN)は、デジタル病理学において広く採用されている。
既存の説明者は、予測に関連する説明的部分グラフを発見する。
説明文は、予測に必要であるだけでなく、最も予測可能な領域を明らかにするのに十分である。
本稿では, IFEXPLAINERを提案する。
論文 参考訳(メタデータ) (2021-12-18T10:19:01Z) - ProtGNN: Towards Self-Explaining Graph Neural Networks [12.789013658551454]
本稿では,プロトタイプ学習とGNNを組み合わせたプロトタイプグラフニューラルネットワーク(ProtGNN)を提案する。
ProtGNNとProtGNN+は、非解釈不能のものと同等の精度を保ちながら、本質的に解釈可能である。
論文 参考訳(メタデータ) (2021-12-02T01:16:29Z) - Jointly Attacking Graph Neural Network and its Explanations [50.231829335996814]
グラフニューラルネットワーク(GNN)は多くのグラフ関連タスクのパフォーマンスを向上した。
近年の研究では、GNNは敵の攻撃に対して非常に脆弱であることが示されており、敵はグラフを変更することでGNNの予測を誤認することができる。
本稿では、GNNモデルとその説明の両方を同時に利用して攻撃できる新しい攻撃フレームワーク(GEAttack)を提案する。
論文 参考訳(メタデータ) (2021-08-07T07:44:33Z) - SEEN: Sharpening Explanations for Graph Neural Networks using
Explanations from Neighborhoods [0.0]
本稿では,補助的説明の集約によるノード分類タスクの説明品質の向上手法を提案する。
SEENを適用するにはグラフを変更する必要はなく、さまざまな説明可能性のテクニックで使用することができる。
与えられたグラフからモチーフ参加ノードをマッチングする実験では、説明精度が最大12.71%向上した。
論文 参考訳(メタデータ) (2021-06-16T03:04:46Z) - Parameterized Explainer for Graph Neural Network [49.79917262156429]
グラフニューラルネットワーク(GNN)のためのパラメータ化説明器PGExplainerを提案する。
既存の研究と比較すると、PGExplainerはより優れた一般化能力を持ち、インダクティブな設定で容易に利用することができる。
合成データセットと実生活データセットの両方の実験では、グラフ分類の説明に関するAUCの相対的な改善が24.7%まで高い競争性能を示した。
論文 参考訳(メタデータ) (2020-11-09T17:15:03Z) - Interpreting Graph Neural Networks for NLP With Differentiable Edge
Masking [63.49779304362376]
グラフニューラルネットワーク(GNN)は、構造的帰納バイアスをNLPモデルに統合する一般的なアプローチとなっている。
本稿では,不要なエッジを識別するGNNの予測を解釈するポストホック手法を提案する。
モデルの性能を劣化させることなく,多数のエッジを落とせることを示す。
論文 参考訳(メタデータ) (2020-10-01T17:51:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。