Abdominal Multi-Organ Segmentation Based on Feature Pyramid Network and
Spatial Recurrent Neural Network
- URL: http://arxiv.org/abs/2308.15137v1
- Date: Tue, 29 Aug 2023 09:13:24 GMT
- Title: Abdominal Multi-Organ Segmentation Based on Feature Pyramid Network and
Spatial Recurrent Neural Network
- Authors: Yuhan Song, Armagan Elibol, Nak Young Chong
- Abstract summary: We propose a new image segmentation model combining Feature Pyramid Network (FPN) and Spatial Recurrent Neural Network (SRNN)
We discuss why we use FPN to extract anatomical structures of different scales and how SRNN is implemented to extract the spatial context features in abdominal ultrasound images.
- Score: 2.8391355909797644
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: As recent advances in AI are causing the decline of conventional diagnostic
methods, the realization of end-to-end diagnosis is fast approaching.
Ultrasound image segmentation is an important step in the diagnostic process.
An accurate and robust segmentation model accelerates the process and reduces
the burden of sonographers. In contrast to previous research, we take two
inherent features of ultrasound images into consideration: (1) different organs
and tissues vary in spatial sizes, (2) the anatomical structures inside human
body form a relatively constant spatial relationship. Based on those two ideas,
we propose a new image segmentation model combining Feature Pyramid Network
(FPN) and Spatial Recurrent Neural Network (SRNN). We discuss why we use FPN to
extract anatomical structures of different scales and how SRNN is implemented
to extract the spatial context features in abdominal ultrasound images.
Related papers
- Intraoperative Registration by Cross-Modal Inverse Neural Rendering [61.687068931599846]
We present a novel approach for 3D/2D intraoperative registration during neurosurgery via cross-modal inverse neural rendering.
Our approach separates implicit neural representation into two components, handling anatomical structure preoperatively and appearance intraoperatively.
We tested our method on retrospective patients' data from clinical cases, showing that our method outperforms state-of-the-art while meeting current clinical standards for registration.
arXiv Detail & Related papers (2024-09-18T13:40:59Z) - Applying Conditional Generative Adversarial Networks for Imaging Diagnosis [3.881664394416534]
This study introduces an innovative application of Conditional Generative Adversarial Networks (C-GAN) integrated with Stacked Hourglass Networks (SHGN)
We address the problem of overfitting, common in deep learning models applied to complex imaging datasets, by augmenting data through rotation and scaling.
A hybrid loss function combining L1 and L2 reconstruction losses, enriched with adversarial training, is introduced to refine segmentation processes in intravascular ultrasound (IVUS) imaging.
arXiv Detail & Related papers (2024-07-17T23:23:09Z) - Echocardiography Segmentation Using Neural ODE-based Diffeomorphic
Registration Field [0.0]
We present a novel method for diffevolution image registration using neural ordinary differential equations (Neural ODE)
The proposed method, Echo-ODE, introduces several key improvements compared to the previous state-of-the-art.
The results show that our method surpasses the previous state-of-the-art in multiple aspects.
arXiv Detail & Related papers (2023-06-16T08:37:27Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
We construct a novel interpretable dual domain network, termed InDuDoNet+, into which CT imaging process is finely embedded.
We analyze the CT values among different tissues, and merge the prior observations into a prior network for our InDuDoNet+, which significantly improve its generalization performance.
arXiv Detail & Related papers (2021-12-23T15:52:37Z) - SQUID: Deep Feature In-Painting for Unsupervised Anomaly Detection [76.01333073259677]
We propose the use of Space-aware Memory Queues for In-painting and Detecting anomalies from radiography images (abbreviated as SQUID)
We show that SQUID can taxonomize the ingrained anatomical structures into recurrent patterns; and in the inference, it can identify anomalies (unseen/modified patterns) in the image.
arXiv Detail & Related papers (2021-11-26T13:47:34Z) - RCA-IUnet: A residual cross-spatial attention guided inception U-Net
model for tumor segmentation in breast ultrasound imaging [0.6091702876917281]
The article introduces an efficient residual cross-spatial attention guided inception U-Net (RCA-IUnet) model with minimal training parameters for tumor segmentation.
The RCA-IUnet model follows U-Net topology with residual inception depth-wise separable convolution and hybrid pooling layers.
Cross-spatial attention filters are added to suppress the irrelevant features and focus on the target structure.
arXiv Detail & Related papers (2021-08-05T10:35:06Z) - Global Guidance Network for Breast Lesion Segmentation in Ultrasound
Images [84.03487786163781]
We develop a deep convolutional neural network equipped with a global guidance block (GGB) and breast lesion boundary detection modules.
Our network outperforms other medical image segmentation methods and the recent semantic segmentation methods on breast ultrasound lesion segmentation.
arXiv Detail & Related papers (2021-04-05T13:15:22Z) - Spatially Dependent U-Nets: Highly Accurate Architectures for Medical
Imaging Segmentation [10.77039660100327]
We introduce a novel deep neural network architecture that exploits the inherent spatial coherence of anatomical structures.
Our approach is well equipped to capture long-range spatial dependencies in the segmented pixel/voxel space.
Our method performs favourably to commonly used U-Net and U-Net++ architectures.
arXiv Detail & Related papers (2021-03-22T10:37:20Z) - Multiple Instance Segmentation in Brachial Plexus Ultrasound Image Using
BPMSegNet [7.562735089700208]
The nerve identification in ultrasound images is a crucial step to improve performance of regional anesthesia.
BPMSegNet is proposed to identify different tissues (nerves, arteries, veins, muscles) in ultrasound images.
The proposed network can segment multiple tissues from the ultrasound images with a good performance.
arXiv Detail & Related papers (2020-12-22T13:57:30Z) - Few-shot Medical Image Segmentation using a Global Correlation Network
with Discriminative Embedding [60.89561661441736]
We propose a novel method for few-shot medical image segmentation.
We construct our few-shot image segmentor using a deep convolutional network trained episodically.
We enhance discriminability of deep embedding to encourage clustering of the feature domains of the same class.
arXiv Detail & Related papers (2020-12-10T04:01:07Z) - Pathological Retinal Region Segmentation From OCT Images Using Geometric
Relation Based Augmentation [84.7571086566595]
We propose improvements over previous GAN-based medical image synthesis methods by jointly encoding the intrinsic relationship of geometry and shape.
The proposed method outperforms state-of-the-art segmentation methods on the public RETOUCH dataset having images captured from different acquisition procedures.
arXiv Detail & Related papers (2020-03-31T11:50:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.