論文の概要: Chronic Diseases Prediction using Machine Learning and Deep Learning Methods
- arxiv url: http://arxiv.org/abs/2505.00189v1
- Date: Wed, 30 Apr 2025 21:08:16 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:55.176554
- Title: Chronic Diseases Prediction using Machine Learning and Deep Learning Methods
- Title(参考訳): 機械学習とディープラーニングを用いた慢性疾患予測
- Authors: Houda Belhad, Asmae Bourbia, Salma Boughanja,
- Abstract要約: 本研究は,慢性疾患および甲状腺疾患の予測に機械学習(ML)およびディープラーニング(DL)技術の応用について検討した。
我々は、ロジスティック回帰(LR)、ランダムフォレスト(RF)、グラディエントブーストツリー(GBT)、ニューラルネットワーク(NN)、決定木(DT)、ネイティブベイズ(NB)など、さまざまなモデルを使用した。
その結果、ランダムフォレストやグラディエントブーストツリーのようなアンサンブル手法は一貫して優れていた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Chronic diseases, such as cardiovascular disease, diabetes, chronic kidney disease, and thyroid disorders, are the leading causes of premature mortality worldwide. Early detection and intervention are crucial for improving patient outcomes, yet traditional diagnostic methods often fail due to the complex nature of these conditions. This study explores the application of machine learning (ML) and deep learning (DL) techniques to predict chronic disease and thyroid disorders. We used a variety of models, including Logistic Regression (LR), Random Forest (RF), Gradient Boosted Trees (GBT), Neural Networks (NN), Decision Trees (DT) and Native Bayes (NB), to analyze and predict disease outcomes. Our methodology involved comprehensive data pre-processing, including handling missing values, categorical encoding, and feature aggregation, followed by model training and evaluation. Performance metrics such ad precision, recall, accuracy, F1-score, and Area Under the Curve (AUC) were used to assess the effectiveness of each model. The results demonstrated that ensemble methods like Random Forest and Gradient Boosted Trees consistently outperformed. Neutral Networks also showed superior performance, particularly in capturing complex data patterns. The findings highlight the potential of ML and DL in revolutionizing chronic disease prediction, enabling early diagnosis and personalized treatment strategies. However, challenges such as data quality, model interpretability, and the need for advanced computational techniques in healthcare to improve patient outcomes and reduce the burden of chronic diseases. This study was conducted as part of Big Data class project under the supervision of our professors Mr. Abderrahmane EZ-ZAHOUT and Mr. Abdessamad ESSAIDI.
- Abstract(参考訳): 心臓血管疾患、糖尿病、慢性腎臓病、甲状腺疾患などの慢性疾患は、世界中で早期死亡の原因となっている。
早期発見と介入は患者の予後を改善するのに不可欠であるが、従来の診断法はしばしばこれらの状態の複雑な性質のために失敗する。
本研究は,慢性疾患および甲状腺疾患の予測に機械学習(ML)およびディープラーニング(DL)技術の応用について検討した。
我々は、ロジスティック回帰(LR)、ランダムフォレスト(RF)、グラディエントブーストツリー(GBT)、ニューラルネットワーク(NN)、決定木(DT)、ネイティブベイズ(NB)など、さまざまなモデルを用いて、疾患の結果を分析し予測した。
提案手法では、欠落した値、分類エンコーディング、特徴集約などの包括的データ前処理を行い、その後にモデルトレーニングと評価を行った。
各モデルの有効性を評価するために、広告精度、リコール、精度、F1スコア、エリアアンダー・ザ・カーブ(AUC)などのパフォーマンス指標を使用した。
その結果、ランダムフォレストやグラディエントブーストツリーのようなアンサンブル手法は一貫して優れていた。
ニュートラルネットワークは、特に複雑なデータパターンのキャプチャにおいて、優れたパフォーマンスを示した。
この結果は,慢性疾患の予測に革命をもたらすMLとDLの可能性を強調し,早期診断とパーソナライズされた治療戦略を可能にした。
しかし、データ品質、モデル解釈可能性、そして慢性疾患の負担を軽減するために医療における高度な計算技術の必要性といった課題がある。
本研究は,Abderrahmane EZ-ZAHOUT教授とAbdessamad ESSAIDI教授の監督のもと,ビッグデータクラスプロジェクトの一環として実施した。
関連論文リスト
- Feature-Enhanced Machine Learning for All-Cause Mortality Prediction in Healthcare Data [0.0]
本研究は,MIMIC-IIIデータベースを用いた全病院死亡予測のための機械学習モデルを評価する。
我々は,バイタルサイン(心拍数,血圧など),実験結果,人口統計情報などの重要な特徴を抽出した。
ランダムフォレストモデルは、AUCの0.94で最高性能を達成し、他の機械学習やディープラーニングのアプローチを著しく上回った。
論文 参考訳(メタデータ) (2025-03-27T08:04:42Z) - Enhancing End Stage Renal Disease Outcome Prediction: A Multi-Sourced Data-Driven Approach [7.212939068975618]
10,326人のCKD患者のデータを利用して,2009年から2018年までの臨床とクレーム情報を組み合わせた。
24ヶ月の観測窓は早期検出と予測精度のバランスをとるのに最適であると同定された。
2021年のeGFR方程式は予測精度を改善し、特にアフリカ系アメリカ人の偏見を低減した。
論文 参考訳(メタデータ) (2024-10-02T03:21:01Z) - Machine Learning for ALSFRS-R Score Prediction: Making Sense of the Sensor Data [44.99833362998488]
筋萎縮性側索硬化症(Amyotrophic Lateral Sclerosis、ALS)は、急速に進行する神経変性疾患である。
iDPP@CLEF 2024チャレンジを先導した今回の調査は,アプリから得られるセンサデータを活用することに焦点を当てている。
論文 参考訳(メタデータ) (2024-07-10T19:17:23Z) - Using Pre-training and Interaction Modeling for ancestry-specific disease prediction in UK Biobank [69.90493129893112]
近年のゲノムワイド・アソシエーション(GWAS)研究は、複雑な形質の遺伝的基盤を明らかにしているが、非ヨーロッパ系個体の低発現を示している。
そこで本研究では,マルチオミクスデータを用いて,多様な祖先間での疾患予測を改善することができるかを評価する。
論文 参考訳(メタデータ) (2024-04-26T16:39:50Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
本稿では,MedDiffusion という,エンドツーエンドの拡散に基づくリスク予測モデルを提案する。
トレーニング中に合成患者データを作成し、サンプルスペースを拡大することで、リスク予測性能を向上させる。
ステップワイズ・アテンション・メカニズムを用いて患者の来訪者間の隠れた関係を識別し、高品質なデータを生成する上で最も重要な情報をモデルが自動的に保持することを可能にする。
論文 参考訳(メタデータ) (2023-10-04T01:36:30Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
我々は,データのバランスが不均衡でサンプルサイズが小さい場合に,より正確な予測を行うために,データのバランスと拡張のための方法論を開発する。
実験の結果,提案手法の平均精度は95.36であり,ランダムフォレスト(RF),決定木(DT),サポートベクターマシン(SVM),ロジスティック回帰(LR),人工ニューラルネットワーク(ANN)よりも高かった。
論文 参考訳(メタデータ) (2023-08-29T14:33:38Z) - Predicting multiple sclerosis disease severity with multimodal deep
neural networks [10.599189568556508]
患者のMS病重症度を予測するための多モード深層学習フレームワークを構築するために,構造化ERHデータ,ニューロイメージングデータ,臨床ノートを活用するパイロット取り組みについて述べる。
提案したパイプラインは、単一モーダルデータを用いたモデルと比較して、受信者動作特性曲線(AUROC)の下での面積の最大25%増加を示す。
論文 参考訳(メタデータ) (2023-04-08T16:23:18Z) - Survival Prediction of Heart Failure Patients using Stacked Ensemble
Machine Learning Algorithm [0.0]
心不全は、我々の時代における主要な健康上の危険問題の1つであり、世界中の死因の1つです。
データマイニングは、医療機関が生成した大量の生データを意味のある情報に変換するプロセスである。
本研究は, 心不全後の生存可能性を予測するためには, 患者から採取した特定の属性のみが必須であることが示唆された。
論文 参考訳(メタデータ) (2021-08-30T16:42:27Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
我々はUNcertaInTyベースのhEalth Risk Prediction(UNITE)モデルを提案する。
UNITEは、複数ソースの健康データを活用した正確な疾患リスク予測と不確実性推定を提供する。
非アルコール性脂肪肝疾患(NASH)とアルツハイマー病(AD)の実態予測タスクにおけるUNITEの評価を行った。
UNITEはAD検出のF1スコアで最大0.841点、NASH検出のPR-AUCで最大0.609点を達成し、最高のベースラインで最大19%の高パフォーマンスを達成している。
論文 参考訳(メタデータ) (2020-10-22T02:28:11Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
新型コロナウイルス(COVID-19)のパンデミックは世界中の緊急対応システムに挑戦している。
本研究は, 症状患者の血液検査データから得られた機械学習モデルについて述べる。
提案されたモデルでは、新型コロナウイルスqRT-PCRの結果を、高い精度、感度、特異性で症状のある個人に予測することができる。
論文 参考訳(メタデータ) (2020-05-10T01:45:03Z) - Learning Dynamic and Personalized Comorbidity Networks from Event Data
using Deep Diffusion Processes [102.02672176520382]
コンコルビンド病は、個人によって異なる複雑な時間的パターンを通じて発生し進行する。
電子的な健康記録では、患者が持つ異なる疾患を観察できるが、それぞれの共死状態の時間的関係を推測できるだけである。
我々は「ダイナミック・コオービディティ・ネットワーク」をモデル化するための深層拡散プロセスを開発する。
論文 参考訳(メタデータ) (2020-01-08T15:47:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。