Inelastic decay from integrability
- URL: http://arxiv.org/abs/2308.15542v3
- Date: Tue, 30 Apr 2024 09:09:22 GMT
- Title: Inelastic decay from integrability
- Authors: Amir Burshtein, Moshe Goldstein,
- Abstract summary: We show that inelastic decay can be observed in circuit QED realizations of integrable boundary models.
We consider the scattering of microwave photons off impurities in superconducting circuits implementing the boundary sine-Gordon and Kondo models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A hallmark of integrable systems is the purely elastic scattering of their excitations. Such systems possess an extensive number of locally conserved charges, leading to the conservation of the number of scattered excitations, as well as their set of individual momenta. In this work, we show that inelastic decay can nevertheless be observed in circuit QED realizations of integrable boundary models. We consider the scattering of microwave photons off impurities in superconducting circuits implementing the boundary sine-Gordon and Kondo models, which are both integrable. We show that not only inelastic decay is possible for the microwave photons, in spite of integrability, and thanks to a nonlinear relation between them and the elastically-scattered excitations, but also that integrability in fact provides powerful analytical tools allowing to obtain exact expressions for response functions describing the inelastic decay. Using the framework of form factors, we calculate the total inelastic decay rate and elastic phase shift of the microwave photons, extracted from a 2-point response function. We then go beyond linear response and obtain the exact energy-resolved inelastic decay spectrum, using a novel method to evaluate form factor expansions of 3-point response functions, which could prove useful in other applications of integrable quantum field theories. We relate our results to several recent photon splitting experiments, and in particular to recent experimental data that provides evidence for the elusive Schmid-Bulgadaev dissipative quantum phase transition.
Related papers
- Linear and Non-Linear Response of Quadratic Lindbladians [0.0]
Quadratic Lindbladians encompass a rich class of dissipative electronic and bosonic quantum systems.
We develop a Lindblad-Keldysh response formalism for open quantum systems that elucidates their steady-state response properties.
arXiv Detail & Related papers (2024-02-09T18:12:15Z) - Robustness and eventual slow decay of bound states of interacting microwave photons in the Google Quantum AI experiment [0.0]
A recent Google Quantum AI experiment demonstrated the persistence of such collective excitations even when the integrability is broken.
We study the spectrum of the model realized in the experiment using exact diagonalization and physical arguments.
We find that isolated bands corresponding to the descendants of the exact bound states of the integrable model are clearly observable in the spectrum for a large range of system sizes.
arXiv Detail & Related papers (2023-07-20T18:00:30Z) - Third quantization of open quantum systems: new dissipative symmetries
and connections to phase-space and Keldysh field theory formulations [77.34726150561087]
We reformulate the technique of third quantization in a way that explicitly connects all three methods.
We first show that our formulation reveals a fundamental dissipative symmetry present in all quadratic bosonic or fermionic Lindbladians.
For bosons, we then show that the Wigner function and the characteristic function can be thought of as ''wavefunctions'' of the density matrix.
arXiv Detail & Related papers (2023-02-27T18:56:40Z) - On the Su-Schrieffer-Heeger model of electron transport: low-temperature
optical conductivity by the Mellin transform [62.997667081978825]
We describe the low-temperature optical conductivity as a function of frequency for a quantum-mechanical system of electrons that hop along a polymer chain.
Our goal is to show vias how the interband conductivity of this system behaves as the smallest energy bandgap tends to close.
arXiv Detail & Related papers (2022-09-26T23:17:39Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Near-Equilibrium Approach to Transport in Complex Sachdev-Ye-Kitaev
Models [0.0]
We study the non-equilibrium dynamics of a one-dimensional complex Sachdev-Ye-Kitaev chain.
We explore the thermoelectric transport properties of this system by imposing uniform temperature and chemical potential gradients.
arXiv Detail & Related papers (2022-04-12T18:00:36Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Quantum Floquet engineering with an exactly solvable tight-binding chain
in a cavity [0.0]
We provide an exactly solvable model given by a tight-binding chain coupled to a single cavity mode.
We show that perturbative expansions in the light-matter coupling have to be taken with care and can easily lead to a false superradiant phase.
In addition, we derive analytical expressions for the electronic single-particle spectral function and optical conductivity.
arXiv Detail & Related papers (2021-07-26T14:33:20Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.