論文の概要: RACR-MIL: Rank-aware contextual reasoning for weakly supervised grading of squamous cell carcinoma using whole slide images
- arxiv url: http://arxiv.org/abs/2308.15618v2
- Date: Sat, 19 Jul 2025 21:50:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-07-22 20:51:31.593486
- Title: RACR-MIL: Rank-aware contextual reasoning for weakly supervised grading of squamous cell carcinoma using whole slide images
- Title(参考訳): RACR-MIL:全スライド画像を用いた扁平上皮癌の悪性度評価のためのランクアウェアコンテキスト推論
- Authors: Anirudh Choudhary, Mosbah Aouad, Krishnakant Saboo, Angelina Hwang, Jacob Kechter, Blake Bordeaux, Puneet Bhullar, David DiCaudo, Steven Nelson, Nneka Comfere, Emma Johnson, Olayemi Sokumbi, Jason Sluzevich, Leah Swanson, Dennis Murphree, Aaron Mangold, Ravishankar Iyer,
- Abstract要約: 扁平上皮癌は最も一般的な癌亜型であり、発生頻度が増加し、がん関連死亡率に大きな影響を及ぼす。
複数の解剖学にまたがる堅牢な一般化を実現するために, RACR-MILを提案する。
本モデルでは,複数のSCCデータセットにまたがる最先端性能を達成し,3~9%のグレーディング精度,クラス不均衡に対するレジリエンス,最大16%の腫瘍局所化を実現した。
- 参考スコア(独自算出の注目度): 0.5190659258584331
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Squamous cell carcinoma (SCC) is the most common cancer subtype, with an increasing incidence and a significant impact on cancer-related mortality. SCC grading using whole slide images is inherently challenging due to the lack of a reliable protocol and substantial tissue heterogeneity. We propose RACR-MIL, the first weakly-supervised SCC grading approach achieving robust generalization across multiple anatomies (skin, head and neck, lung). RACR-MIL is an attention-based multiple-instance learning framework that enhances grade-relevant contextual representation learning and addresses tumor heterogeneity through two key innovations: (1) a hybrid WSI graph that captures both local tissue context and non-local phenotypical dependencies between tumor regions, and (2) a rank-ordering constraint in the attention mechanism that consistently prioritizes higher-grade tumor regions, aligning with pathologists diagnostic process. Our model achieves state-of-the-art performance across multiple SCC datasets, achieving 3-9% higher grading accuracy, resilience to class imbalance, and up to 16% improved tumor localization. In a pilot study, pathologists reported that RACR-MIL improved grading efficiency in 60% of cases, underscoring its potential as a clinically viable cancer diagnosis and grading assistant.
- Abstract(参考訳): 扁平上皮癌(SCC)は最も一般的ながんサブタイプであり、発生頻度が増加し、がん関連死亡率に大きな影響を及ぼす。
スライド画像全体を用いたSCCグレーディングは、信頼性の高いプロトコルと実質的な組織不均一性の欠如により本質的に困難である。
我々は,複数の解剖群(皮膚,頭頸部,肺)にまたがる堅牢な一般化を実現する,最初の弱制御SCCグレーディングアプローチであるRACR-MILを提案する。
RACR-MILは,腫瘍領域間の局所組織コンテキストと非局所的表現型依存関係を捕捉するハイブリッドWSIグラフと,高次腫瘍領域を常に優先する注意機構におけるランク順の制約を,病理医の診断プロセスと整合させて,次級関連文脈表現学習を強化し,腫瘍の不均一性に対処する,注意ベースのマルチインスタンス学習フレームワークである。
本モデルでは,複数のSCCデータセットにまたがる最先端性能を達成し,3~9%のグレーディング精度,クラス不均衡に対するレジリエンス,最大16%の腫瘍局所化を実現した。
臨床試験では、RACR-MILは60%の症例でグレーティング効率を改善し、臨床的に有効ながん診断およびグレーディングアシスタントとしての可能性を示していると報告された。
関連論文リスト
- MAST-Pro: Dynamic Mixture-of-Experts for Adaptive Segmentation of Pan-Tumors with Knowledge-Driven Prompts [54.915060471994686]
MAST-Proは,ダイナミックなMixture-of-Experts(D-MoE)とパン腫瘍セグメンテーションのための知識駆動プロンプトを統合した新しいフレームワークである。
具体的には、テキストと解剖学的プロンプトは、腫瘍表現学習を導くドメイン固有の事前情報を提供し、D-MoEは、ジェネリックと腫瘍固有の特徴学習のバランスをとる専門家を動的に選択する。
マルチ解剖学的腫瘍データセットの実験では、MAST-Proは最先端のアプローチよりも優れており、トレーニング可能なパラメータを91.04%削減し、平均改善の5.20%を達成している。
論文 参考訳(メタデータ) (2025-03-18T15:39:44Z) - Pathological Prior-Guided Multiple Instance Learning For Mitigating Catastrophic Forgetting in Breast Cancer Whole Slide Image Classification [50.899861205016265]
乳癌のWSI分類における破滅的忘れを緩和する新しい枠組みであるPaGMILを提案する。
私たちのフレームワークでは、共通のMILモデルアーキテクチャに2つの重要なコンポーネントを導入しています。
複数の乳がんデータセットを対象としたPaGMILの連続学習性能の評価を行った。
論文 参考訳(メタデータ) (2025-03-08T04:51:58Z) - SmoothSegNet: A Global-Local Framework for Liver Tumor Segmentation with Clinical KnowledgeInformed Label Smoothing [17.798774864007505]
肝がんは世界中で死亡率の高い原因である。
正確な肝腫瘍の分節は、腫瘍の異種性のため、依然として困難である。
SmoothSegNetは、これらの課題に3つの重要な設計で対処する、新しいディープラーニングフレームワークである。
論文 参考訳(メタデータ) (2024-10-13T20:52:25Z) - Optimizing Synthetic Correlated Diffusion Imaging for Breast Cancer Tumour Delineation [71.91773485443125]
CDI$s$ - 最適化されたモダリティにより最高のAUCが達成され、金標準のモダリティが0.0044より優れていることを示す。
特に、最適化されたCDI$s$モダリティは、最適化されていないCDI$s$値よりも0.02以上のAUC値を達成する。
論文 参考訳(メタデータ) (2024-05-13T16:07:58Z) - Improving Breast Cancer Grade Prediction with Multiparametric MRI Created Using Optimized Synthetic Correlated Diffusion Imaging [71.91773485443125]
乳がん治療計画において、グレーディングは重要な役割を担っている。
現在の腫瘍グレード法では、患者から組織を抽出し、ストレス、不快感、医療費の上昇につながる。
本稿では,CDI$s$の最適化による乳癌の診断精度の向上について検討する。
論文 参考訳(メタデータ) (2024-05-13T15:48:26Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
CIMIL-CRCは、事前学習した特徴抽出モデルと主成分分析(PCA)を効率よく組み合わせ、全てのパッチから情報を集約することで、MSI/MSS MIL問題を解決するフレームワークである。
我々は,TCGA-CRC-DXコホートを用いたモデル開発のための5倍のクロスバリデーション実験装置を用いて,曲線下平均面積(AUC)を用いてCIMIL-CRC法の評価を行った。
論文 参考訳(メタデータ) (2024-01-29T12:56:11Z) - Cross-attention-based saliency inference for predicting cancer
metastasis on whole slide images [3.7282630026096597]
乳がんリンパ節の微小転移を全スライド画像上で同定するために, クロスアテンションに基づく静注型インスタンス推定MIL (CASiiMIL) を提案する。
陰性表現学習アルゴリズムを導入し,腫瘍WSIに対する感度を向上させるために,有意な注意重み付けの学習を容易にする。
提案モデルでは, 2つの腫瘍転移検出データセットに対して, 最先端のMIL法より優れていた。
論文 参考訳(メタデータ) (2023-09-18T00:56:19Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
胸部超音波(BUS)画像分類において,グローバルな文脈情報の収集が重要な役割を担っている。
ビジョントランスフォーマーは、グローバルなコンテキスト情報をキャプチャする能力が改善されているが、トークン化操作によって局所的なイメージパターンを歪めてしまう可能性がある。
本研究では,BUS腫瘍分類とセグメンテーションを行うハイブリッドマルチタスクディープニューラルネットワークであるHybrid-MT-ESTANを提案する。
論文 参考訳(メタデータ) (2023-08-04T01:19:32Z) - Context-Aware Self-Supervised Learning of Whole Slide Images [0.0]
本研究では, 新たな2段階学習手法を提案する。
WSI内のすべての領域間の依存関係をキャプチャするグラフ表現は非常に直感的です。
スライド全体はグラフとして表示され、ノードはWSIのパッチに対応する。
提案したフレームワークは、前立腺癌と腎癌からのWSIを用いてテストされる。
論文 参考訳(メタデータ) (2023-06-07T20:23:05Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - Active Learning Enhances Classification of Histopathology Whole Slide
Images with Attention-based Multiple Instance Learning [48.02011627390706]
我々は、注意に基づくMILをトレーニングし、データセット内の各画像に対する信頼度を算出し、専門家のアノテーションに対して最も不確実なWSIを選択する。
新たな注意誘導損失により、各クラスにアノテートされた領域がほとんどない、トレーニングされたモデルの精度が向上する。
将来的には、病理組織学における癌分類の臨床的に関連する文脈において、MILモデルのトレーニングに重要な貢献をする可能性がある。
論文 参考訳(メタデータ) (2023-03-02T15:18:58Z) - Hierarchical Transformer for Survival Prediction Using Multimodality
Whole Slide Images and Genomics [63.76637479503006]
下流タスクのためのギガピクセルレベルのスライド病理画像(WSI)の良質な表現を学習することが重要である。
本稿では,病理画像と対応する遺伝子間の階層的マッピングを学習する階層型マルチモーダルトランスフォーマーフレームワークを提案する。
より優れたWSI表現能力を維持しながら、ベンチマーク手法と比較してGPUリソースが少ないアーキテクチャです。
論文 参考訳(メタデータ) (2022-11-29T23:47:56Z) - Decoupled Pyramid Correlation Network for Liver Tumor Segmentation from
CT images [22.128902125820193]
Decoupled Pyramid correlation Network (DPC-Net)を提案する。
注意機構を利用して、FCNに埋め込まれた低レベルの特徴と高レベルの特徴をフル活用し、肝腫瘍を分節する。
DSCは96.2%、ASSDは1.636mmで肝臓セグメンテーションが可能である。
論文 参考訳(メタデータ) (2022-05-26T07:31:29Z) - Multi-Scale Hybrid Vision Transformer for Learning Gastric Histology:
AI-Based Decision Support System for Gastric Cancer Treatment [50.89811515036067]
胃内視鏡検査は、早期に適切な胃癌(GC)治療を判定し、GC関連死亡率を低下させる有効な方法である。
本稿では,一般のGC治療指導と直接一致する5つのGC病理のサブ分類を可能にする実用的なAIシステムを提案する。
論文 参考訳(メタデータ) (2022-02-17T08:33:52Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Multi-Scale Input Strategies for Medulloblastoma Tumor Classification
using Deep Transfer Learning [59.30734371401316]
乳腺芽腫は小児で最も多い悪性脳腫瘍である。
CNNはMBサブタイプ分類に有望な結果を示した。
タイルサイズと入力戦略の影響について検討した。
論文 参考訳(メタデータ) (2021-09-14T09:42:37Z) - Self supervised learning improves dMMR/MSI detection from histology
slides across multiple cancers [0.0]
マイクロサテライト不安定症(MSI)は大腸癌の診断に大きく影響する腫瘍表現型である
H&Eステンディングスライドから直接MSI腫瘍を検出する深層学習モデルは、MSI患者の診断を改善することを約束している。
我々は、MoCo V2を用いて、TCGAデータセットの組織像からニューラルネットワークをトレーニングすることで、近年の自己教師学習の進歩を活用している。
論文 参考訳(メタデータ) (2021-09-13T09:43:12Z) - A Novel Self-Learning Framework for Bladder Cancer Grading Using
Histopathological Images [1.244681179922733]
組織像から膀胱癌を診断するための自己学習の枠組みについて検討した。
組織学的パッチを病のさまざまなレベルに分類できる新しいDeep Convolutional Embedded Attention Clustering (DCEAC)を提案する。
論文 参考訳(メタデータ) (2021-06-25T11:04:04Z) - Synthesizing lesions using contextual GANs improves breast cancer
classification on mammograms [0.4297070083645048]
本稿では, マンモグラムの病変を現実的に合成し, 除去するデータ拡張のための, GANモデルを提案する。
自己注意と半教師付き学習コンポーネントにより、U-netベースのアーキテクチャは高解像度(256x256px)の出力を生成することができる。
論文 参考訳(メタデータ) (2020-05-29T21:23:00Z) - A Two-Stage Multiple Instance Learning Framework for the Detection of
Breast Cancer in Mammograms [13.842620686759616]
乳がんの大規模検診ではマンモグラムが一般的に用いられる。
画像レベルの悪性度検出のための2段階多段階学習フレームワークを提案する。
グローバルなイメージレベル機能は、CNNで学んだパッチレベル機能の重み付け平均として計算される。
画像レベルの分類では, 平均精度が0.76/0.80, 平均AUCが0.91であった。
論文 参考訳(メタデータ) (2020-04-24T13:06:47Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z) - Multi-scale Domain-adversarial Multiple-instance CNN for Cancer Subtype
Classification with Unannotated Histopathological Images [16.02231907106384]
我々は,マルチインスタンス,ドメイン逆数,マルチスケール学習フレームワークを効果的に組み合わせ,CNNに基づく癌サブタイプ分類法を開発した。
分類性能は標準のCNNや他の従来の方法よりも有意に優れており, 精度は標準の病理医と比較して良好であった。
論文 参考訳(メタデータ) (2020-01-06T14:09:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。