Intelligent System for Assessing University Student Personality
Development and Career Readiness
- URL: http://arxiv.org/abs/2308.15620v1
- Date: Tue, 29 Aug 2023 20:32:58 GMT
- Title: Intelligent System for Assessing University Student Personality
Development and Career Readiness
- Authors: Izbassar Assylzhan, Muragul Muratbekova, Daniyar Amangeldi, Nazzere
Oryngozha, Anna Ogorodova, Pakizar Shamoi
- Abstract summary: This research paper explores the impact of various factors on university students' readiness for change and transition.
The collected data from a KBTU student survey was processed through machine learning models.
An intelligent system was built using these models and fuzzy sets.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While academic metrics such as transcripts and GPA are commonly used to
evaluate students' knowledge acquisition, there is a lack of comprehensive
metrics to measure their preparedness for the challenges of post-graduation
life. This research paper explores the impact of various factors on university
students' readiness for change and transition, with a focus on their
preparedness for careers. The methodology employed in this study involves
designing a survey based on Paul J. Mayer's "The Balance Wheel" to capture
students' sentiments on various life aspects, including satisfaction with the
educational process and expectations of salary. The collected data from a KBTU
student survey (n=47) were processed through machine learning models: Linear
Regression, Support Vector Regression (SVR), Random Forest Regression.
Subsequently, an intelligent system was built using these models and fuzzy
sets. The system is capable of evaluating graduates' readiness for their future
careers and demonstrates a high predictive power. The findings of this research
have practical implications for educational institutions. Such an intelligent
system can serve as a valuable tool for universities to assess and enhance
students' preparedness for post-graduation challenges. By recognizing the
factors contributing to students' readiness for change, universities can refine
curricula and processes to better prepare students for their career journeys.
Related papers
- Could ChatGPT get an Engineering Degree? Evaluating Higher Education Vulnerability to AI Assistants [175.9723801486487]
We evaluate whether two AI assistants, GPT-3.5 and GPT-4, can adequately answer assessment questions.
GPT-4 answers an average of 65.8% of questions correctly, and can even produce the correct answer across at least one prompting strategy for 85.1% of questions.
Our results call for revising program-level assessment design in higher education in light of advances in generative AI.
arXiv Detail & Related papers (2024-08-07T12:11:49Z) - The Evolution of Learning: Assessing the Transformative Impact of Generative AI on Higher Education [0.0]
Generative Artificial Intelligence models such as ChatGPT have experienced a surge in popularity.
This research paper investigates the impact of GAI on university students and Higher Education Institutions.
arXiv Detail & Related papers (2024-04-16T13:19:57Z) - A machine learning approach to predict university enrolment choices through students' high school background in Italy [42.57210316104905]
This paper explores the influence of Italian high school students' proficiency in mathematics and the Italian language on their university enrolment choices.
We investigate potential gender differences in response to similar previous educational choices and achievements.
The findings shed light on the complex interplay of academic proficiency, gender, and high school background in shaping students' choices regarding university education.
arXiv Detail & Related papers (2024-02-29T10:05:37Z) - Towards Goal-oriented Intelligent Tutoring Systems in Online Education [69.06930979754627]
We propose a new task, named Goal-oriented Intelligent Tutoring Systems (GITS)
GITS aims to enable the student's mastery of a designated concept by strategically planning a customized sequence of exercises and assessment.
We propose a novel graph-based reinforcement learning framework, named Planning-Assessment-Interaction (PAI)
arXiv Detail & Related papers (2023-12-03T12:37:16Z) - Students Success Modeling: Most Important Factors [0.47829670123819784]
The model undertakes to identify students likely to graduate, the ones likely to transfer to a different school, and the ones likely to drop out and leave their higher education unfinished.
Our experiments demonstrate that distinguishing between to-be-graduate and at-risk students is reasonably achievable in the earliest stages.
The model remarkably foresees the fate of students who stay in the school for three years.
arXiv Detail & Related papers (2023-09-06T19:23:10Z) - A Domain-Agnostic Approach for Characterization of Lifelong Learning
Systems [128.63953314853327]
"Lifelong Learning" systems are capable of 1) Continuous Learning, 2) Transfer and Adaptation, and 3) Scalability.
We show that this suite of metrics can inform the development of varied and complex Lifelong Learning systems.
arXiv Detail & Related papers (2023-01-18T21:58:54Z) - A Framework for Undergraduate Data Collection Strategies for Student
Support Recommendation Systems in Higher Education [12.358921226358133]
This paper outlines a data collection framework specific to recommender systems within higher education.
The purpose of this paper is to outline a data collection framework specific to recommender systems within this context.
arXiv Detail & Related papers (2022-10-16T13:39:11Z) - Lifelong Learning Metrics [63.8376359764052]
The DARPA Lifelong Learning Machines (L2M) program seeks to yield advances in artificial intelligence (AI) systems.
This document outlines a formalism for constructing and characterizing the performance of agents performing lifelong learning scenarios.
arXiv Detail & Related papers (2022-01-20T16:29:14Z) - An Analysis of Programming Course Evaluations Before and After the
Introduction of an Autograder [1.329950749508442]
This paper studies the answers to the standardized university evaluation questionnaires of foundational computer science courses which recently introduced autograding.
We hypothesize how the autograder might have contributed to the significant changes in the data, such as, improved interactions between tutors and students, improved overall course quality, improved learning success, increased time spent, and reduced difficulty.
The autograder technology can be validated as a teaching method to improve student satisfaction with programming courses.
arXiv Detail & Related papers (2021-10-28T14:09:44Z) - Scaling up Search Engine Audits: Practical Insights for Algorithm
Auditing [68.8204255655161]
We set up experiments for eight search engines with hundreds of virtual agents placed in different regions.
We demonstrate the successful performance of our research infrastructure across multiple data collections.
We conclude that virtual agents are a promising venue for monitoring the performance of algorithms across long periods of time.
arXiv Detail & Related papers (2021-06-10T15:49:58Z) - Personalized Education in the AI Era: What to Expect Next? [76.37000521334585]
The objective of personalized learning is to design an effective knowledge acquisition track that matches the learner's strengths and bypasses her weaknesses to meet her desired goal.
In recent years, the boost of artificial intelligence (AI) and machine learning (ML) has unfolded novel perspectives to enhance personalized education.
arXiv Detail & Related papers (2021-01-19T12:23:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.