Single-ancilla ground state preparation via Lindbladians
- URL: http://arxiv.org/abs/2308.15676v4
- Date: Fri, 2 Aug 2024 22:55:27 GMT
- Title: Single-ancilla ground state preparation via Lindbladians
- Authors: Zhiyan Ding, Chi-Fang Chen, Lin Lin,
- Abstract summary: We design a quantum algorithm for ground state preparation in the early fault tolerant regime.
As a Monte Carlo-style quantum algorithm, our method features a Lindbladian where the target state is stationary.
Our algorithm can be implemented using just one ancilla qubit and efficiently simulated on a quantum computer.
- Score: 4.328210085579236
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We design a quantum algorithm for ground state preparation in the early fault tolerant regime. As a Monte Carlo-style quantum algorithm, our method features a Lindbladian where the target state is stationary. The construction of this Lindbladian is algorithmic and should not be seen as a specific approximation to some weakly coupled system-bath dynamics in nature. Our algorithm can be implemented using just one ancilla qubit and efficiently simulated on a quantum computer. It can prepare the ground state even when the initial state has zero overlap with the ground state, bypassing the most significant limitation of methods like quantum phase estimation. As a variant, we also propose a discrete-time algorithm, demonstrating even better efficiency and providing a near-optimal simulation cost depending on the desired evolution time and precision. Numerical simulation using Ising and Hubbard models demonstrates the efficacy and applicability of our method.
Related papers
- Efficient Optimal Control of Open Quantum Systems [13.49808025870994]
The optimal control problem for open quantum systems can be formulated as a time-dependent Lindbladian.
We present algorithms for solving this optimal control problem efficiently.
Our algorithms are hybrid, consisting of both quantum and classical components.
arXiv Detail & Related papers (2024-05-29T16:26:57Z) - Hybrid algorithm simulating non-equilibrium steady states of an open
quantum system [10.752869788647802]
Non-equilibrium steady states are a focal point of research in the study of open quantum systems.
Previous variational algorithms for searching these steady states have suffered from resource-intensive implementations.
We present a novel variational quantum algorithm that efficiently searches for non-equilibrium steady states by simulating the operator-sum form of the Lindblad equation.
arXiv Detail & Related papers (2023-09-13T01:57:27Z) - Improved iterative quantum algorithm for ground-state preparation [4.921552273745794]
We propose an improved iterative quantum algorithm to prepare the ground state of a Hamiltonian system.
Our approach has advantages including the higher success probability at each iteration, the measurement precision-independent sampling complexity, the lower gate complexity, and only quantum resources are required when the ancillary state is well prepared.
arXiv Detail & Related papers (2022-10-16T05:57:43Z) - Exact and efficient Lanczos method on a quantum computer [0.0]
We present an algorithm that uses block encoding on a quantum computer to exactly construct a Krylov space.
The construction is exact in the sense that the Krylov space is identical to that of the Lanczos method.
arXiv Detail & Related papers (2022-08-01T01:57:23Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
We present a classical algorithm to find approximate solutions to instances of quadratic unconstrained binary optimisation.
We benchmark our approach for large scale problem instances with tuneable hardness and planted solutions.
arXiv Detail & Related papers (2021-08-18T09:26:17Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Fixed Depth Hamiltonian Simulation via Cartan Decomposition [59.20417091220753]
We present a constructive algorithm for generating quantum circuits with time-independent depth.
We highlight our algorithm for special classes of models, including Anderson localization in one dimensional transverse field XY model.
In addition to providing exact circuits for a broad set of spin and fermionic models, our algorithm provides broad analytic and numerical insight into optimal Hamiltonian simulations.
arXiv Detail & Related papers (2021-04-01T19:06:00Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z) - Efficient State Preparation for Quantum Amplitude Estimation [0.951828574518325]
Quantum Amplitude Estimation can achieve a quadratic speed-up for applications classically solved by Monte Carlo simulation.
Currently known efficient techniques require problems based on log-concave probability distributions, involve learning an unknown distribution from empirical data, or fully rely on quantum arithmetic.
We introduce an approach to simplify state preparation, together with a circuit optimization technique, both of which can help reduce the circuit complexity for QAE state preparation significantly.
arXiv Detail & Related papers (2020-05-15T18:00:01Z) - Efficient classical simulation of random shallow 2D quantum circuits [104.50546079040298]
Random quantum circuits are commonly viewed as hard to simulate classically.
We show that approximate simulation of typical instances is almost as hard as exact simulation.
We also conjecture that sufficiently shallow random circuits are efficiently simulable more generally.
arXiv Detail & Related papers (2019-12-31T19:00:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.