Hybrid algorithm simulating non-equilibrium steady states of an open
quantum system
- URL: http://arxiv.org/abs/2309.06665v1
- Date: Wed, 13 Sep 2023 01:57:27 GMT
- Title: Hybrid algorithm simulating non-equilibrium steady states of an open
quantum system
- Authors: Hongyi Zhou, Rui Mao, Xiaoming Sun
- Abstract summary: Non-equilibrium steady states are a focal point of research in the study of open quantum systems.
Previous variational algorithms for searching these steady states have suffered from resource-intensive implementations.
We present a novel variational quantum algorithm that efficiently searches for non-equilibrium steady states by simulating the operator-sum form of the Lindblad equation.
- Score: 10.752869788647802
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-equilibrium steady states are a focal point of research in the study of
open quantum systems. Previous variational algorithms for searching these
steady states have suffered from resource-intensive implementations due to
vectorization or purification of the system density matrix, requiring large
qubit resources and long-range coupling. In this work, we present a novel
variational quantum algorithm that efficiently searches for non-equilibrium
steady states by simulating the operator-sum form of the Lindblad equation. By
introducing the technique of random measurement, we are able to estimate the
nonlinear cost function while reducing the required qubit resources by half
compared to previous methods. Additionally, we prove the existence of the
parameter shift rule in our variational algorithm, enabling efficient updates
of circuit parameters using gradient-based classical algorithms. To demonstrate
the performance of our algorithm, we conduct simulations for dissipative
quantum transverse Ising and Heisenberg models, achieving highly accurate
results. Our approach offers a promising solution for effectively addressing
non-equilibrium steady state problems while overcoming computational
limitations and implementation challenges.
Related papers
- Demonstration of Scalability and Accuracy of Variational Quantum Linear Solver for Computational Fluid Dynamics [0.0]
This paper presents an exploration of quantum methodologies aimed at achieving high accuracy in solving such a large system of equations.
We consider the 2D, transient, incompressible, viscous, non-linear coupled Burgers equation as a test problem.
Our findings demonstrate that our quantum methods yield results comparable in accuracy to traditional approaches.
arXiv Detail & Related papers (2024-09-05T04:42:24Z) - Application of Langevin Dynamics to Advance the Quantum Natural Gradient Optimization Algorithm [47.47843839099175]
A Quantum Natural Gradient (QNG) algorithm for optimization of variational quantum circuits has been proposed recently.
In this study, we employ the Langevin equation with a QNG force to demonstrate that its discrete-time solution gives a generalized form, which we call Momentum-QNG.
arXiv Detail & Related papers (2024-09-03T15:21:16Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - A non-Hermitian Ground State Searching Algorithm Enhanced by Variational
Toolbox [13.604981031329453]
Ground-state preparation for a given Hamiltonian is a common quantum-computing task of great importance.
We consider an approach to simulate dissipative non-Hermitian quantum dynamics using Hamiltonian simulation techniques.
The proposed method facilitates the energy transfer by repeatedly projecting ancilla qubits to the desired state.
arXiv Detail & Related papers (2022-10-17T12:26:45Z) - Quantum gradient descent algorithms for nonequilibrium steady states and
linear algebraic systems [0.17188280334580192]
gradient descent is a key ingredient in variational quantum algorithms and machine learning tasks.
We present approaches to simulate the nonequilibrium steady states of Markovian open quantum many-body systems.
We adapt the quantum gradient descent algorithm to solve linear algebra problems including linear systems of equations and matrix-vector multiplications.
arXiv Detail & Related papers (2022-04-15T01:20:33Z) - A Priori Denoising Strategies for Sparse Identification of Nonlinear
Dynamical Systems: A Comparative Study [68.8204255655161]
We investigate and compare the performance of several local and global smoothing techniques to a priori denoise the state measurements.
We show that, in general, global methods, which use the entire measurement data set, outperform local methods, which employ a neighboring data subset around a local point.
arXiv Detail & Related papers (2022-01-29T23:31:25Z) - A Hybrid Quantum-Classical Algorithm for Robust Fitting [47.42391857319388]
We propose a hybrid quantum-classical algorithm for robust fitting.
Our core contribution is a novel robust fitting formulation that solves a sequence of integer programs.
We present results obtained using an actual quantum computer.
arXiv Detail & Related papers (2022-01-25T05:59:24Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - An efficient adaptive variational quantum solver of the Schrodinger
equation based on reduced density matrices [8.24048506727803]
We present an efficient adaptive variational quantum solver of the Schrodinger equation based on ADAPT-VQE.
This new algorithm is quite suitable for quantum simulations of chemical systems on near-term noisy intermediate-scale hardware.
arXiv Detail & Related papers (2020-12-13T12:22:41Z) - A Dynamical Systems Approach for Convergence of the Bayesian EM
Algorithm [59.99439951055238]
We show how (discrete-time) Lyapunov stability theory can serve as a powerful tool to aid, or even lead, in the analysis (and potential design) of optimization algorithms that are not necessarily gradient-based.
The particular ML problem that this paper focuses on is that of parameter estimation in an incomplete-data Bayesian framework via the popular optimization algorithm known as maximum a posteriori expectation-maximization (MAP-EM)
We show that fast convergence (linear or quadratic) is achieved, which could have been difficult to unveil without our adopted S&C approach.
arXiv Detail & Related papers (2020-06-23T01:34:18Z) - Policy Gradient based Quantum Approximate Optimization Algorithm [2.5614220901453333]
We show that policy-gradient-based reinforcement learning algorithms are well suited for optimizing the variational parameters of QAOA in a noise-robust fashion.
We analyze the performance of the algorithm for quantum state transfer problems in single- and multi-qubit systems.
arXiv Detail & Related papers (2020-02-04T00:46:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.