Lindblad engineering for quantum Gibbs state preparation under the eigenstate thermalization hypothesis
- URL: http://arxiv.org/abs/2412.17706v2
- Date: Fri, 28 Mar 2025 13:57:30 GMT
- Title: Lindblad engineering for quantum Gibbs state preparation under the eigenstate thermalization hypothesis
- Authors: Eric Brunner, Luuk Coopmans, Gabriel Matos, Matthias Rosenkranz, Frederic Sauvage, Yuta Kikuchi,
- Abstract summary: We show that a simplified protocol for quantum Gibbs state preparation algorithms is efficient under the eigenstate thermalization hypothesis (ETH)<n>We show that the realized Lindblad algorithm exhibits an inherent resilience against noise, opening up the path to a first demonstration on quantum computers.<n>This work bridges the gap between recent theoretical advances in dissipative Gibbs state preparation algorithms and their eventual quantum hardware implementation.
- Score: 0.4040782475977877
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building upon recent progress in Lindblad engineering for quantum Gibbs state preparation algorithms, we propose a simplified protocol that is shown to be efficient under the eigenstate thermalization hypothesis (ETH). The ETH reduces circuit overheads of the Lindblad simulation algorithm and ensures a fast convergence toward the target Gibbs state. Moreover, we show that the realized Lindblad dynamics exhibits an inherent resilience against stochastic noise, opening up the path to a first demonstration on quantum computers. We complement our claims with numerical studies of the algorithm's convergence in various regimes of the mixed-field Ising model. In line with our predictions, we observe a mixing time scaling polynomially with system size when the ETH is satisfied. In addition, we assess the impact of algorithmic and hardware-induced errors on the algorithm's performance by carrying out quantum circuit simulations of our Lindblad simulation protocol with a local depolarizing noise model. This work bridges the gap between recent theoretical advances in dissipative Gibbs state preparation algorithms and their eventual quantum hardware implementation.
Related papers
- Bayesian Quantum Amplitude Estimation [49.1574468325115]
We introduce BAE, a noise-aware Bayesian algorithm for quantum amplitude estimation.<n>We show that BAE achieves Heisenberg-limited estimation and benchmark it against other approaches.
arXiv Detail & Related papers (2024-12-05T18:09:41Z) - Trapped-ion quantum simulation of the Fermi-Hubbard model as a lattice gauge theory using hardware-aware native gates [0.3370543514515051]
Trotterization-based quantum simulations have shown promise, but implementations on current hardware are limited by noise.
A mapping of the Fermi-Hubbard model to a Z2 LGT was recently proposed that restricts the dynamics to a subspace protected by additional symmetries, and its ability for post-selection error mitigation was verified through noisy classical simulations.
In particular, a novel combination of iteratively preconditioned gradient descent (IPG) and subsystem von Neumann Entropy compression reduces the 2-qubit gate count of FHM quantum simulation by 35%.
arXiv Detail & Related papers (2024-11-12T13:21:12Z) - Quantum time dynamics mediated by the Yang-Baxter equation and artificial neural networks [3.9079297720687536]
This study explores new strategies for mitigating quantum errors using artificial neural networks (ANN) and the Yang-Baxter equation (YBE)
We developed a novel method that combines ANN for noise mitigation combined with the YBE to generate noisy data.
This approach effectively reduces noise in quantum simulations, enhancing the accuracy of the results.
arXiv Detail & Related papers (2024-01-30T15:50:06Z) - Single-ancilla ground state preparation via Lindbladians [4.328210085579236]
We design a quantum algorithm for ground state preparation in the early fault tolerant regime.
As a Monte Carlo-style quantum algorithm, our method features a Lindbladian where the target state is stationary.
Our algorithm can be implemented using just one ancilla qubit and efficiently simulated on a quantum computer.
arXiv Detail & Related papers (2023-08-30T00:11:19Z) - Improved Digital Quantum Simulation by Non-Unitary Channels [0.5999777817331317]
We study the performance of non-unitary simulation channels and consider the error structure of channels constructed from a weighted average of unitary circuits.
We show that averaging over just a few simulation circuits can significantly reduce the Trotterization error for both single-step short-time and multi-step long-time simulations.
arXiv Detail & Related papers (2023-07-24T18:00:02Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Decomposition of Matrix Product States into Shallow Quantum Circuits [62.5210028594015]
tensor network (TN) algorithms can be mapped to parametrized quantum circuits (PQCs)
We propose a new protocol for approximating TN states using realistic quantum circuits.
Our results reveal one particular protocol, involving sequential growth and optimization of the quantum circuit, to outperform all other methods.
arXiv Detail & Related papers (2022-09-01T17:08:41Z) - Robust nonadiabatic geometric quantum computation by dynamical
correction [0.0]
We propose a robust scheme for nonadiabatic geometric quantum computation (NGQC) combining with the dynamical correction technique.
We numerically show that our scheme can greatly improve the gate robustness in previous protocols.
Our scheme provides a promising alternation for the future scalable fault-tolerant quantum computation.
arXiv Detail & Related papers (2022-08-02T14:09:48Z) - Probing finite-temperature observables in quantum simulators of spin
systems with short-time dynamics [62.997667081978825]
We show how finite-temperature observables can be obtained with an algorithm motivated from the Jarzynski equality.
We show that a finite temperature phase transition in the long-range transverse field Ising model can be characterized in trapped ion quantum simulators.
arXiv Detail & Related papers (2022-06-03T18:00:02Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Assessment of weak-coupling approximations on a driven two-level system
under dissipation [58.720142291102135]
We study a driven qubit through the numerically exact and non-perturbative method known as the Liouville-von equation with dissipation.
We propose a metric that may be used in experiments to map the regime of validity of the Lindblad equation in predicting the steady state of the driven qubit.
arXiv Detail & Related papers (2020-11-11T22:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.