論文の概要: Calibrated Explanations for Regression
- arxiv url: http://arxiv.org/abs/2308.16245v3
- Date: Sat, 25 May 2024 17:29:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-29 12:08:44.356320
- Title: Calibrated Explanations for Regression
- Title(参考訳): 回帰の校正説明
- Authors: Tuwe Löfström, Helena Löfström, Ulf Johansson, Cecilia Sönströd, Rudy Matela,
- Abstract要約: 回帰のための校正的説明は、高速で信頼性があり、安定し、堅牢な説明を提供する。
確率的回帰のための校正的説明は、説明を作成する全く新しい方法を提供する。
Pythonの実装はGitHubで無料で利用可能で、pipとcondaの両方を使ってインストールすることができる。
- 参考スコア(独自算出の注目度): 1.2058600649065616
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Artificial Intelligence (AI) is often an integral part of modern decision support systems. The best-performing predictive models used in AI-based decision support systems lack transparency. Explainable Artificial Intelligence (XAI) aims to create AI systems that can explain their rationale to human users. Local explanations in XAI can provide information about the causes of individual predictions in terms of feature importance. However, a critical drawback of existing local explanation methods is their inability to quantify the uncertainty associated with a feature's importance. This paper introduces an extension of a feature importance explanation method, Calibrated Explanations, previously only supporting classification, with support for standard regression and probabilistic regression, i.e., the probability that the target is above an arbitrary threshold. The extension for regression keeps all the benefits of Calibrated Explanations, such as calibration of the prediction from the underlying model with confidence intervals, uncertainty quantification of feature importance, and allows both factual and counterfactual explanations. Calibrated Explanations for standard regression provides fast, reliable, stable, and robust explanations. Calibrated Explanations for probabilistic regression provides an entirely new way of creating probabilistic explanations from any ordinary regression model, allowing dynamic selection of thresholds. The method is model agnostic with easily understood conditional rules. An implementation in Python is freely available on GitHub and for installation using both pip and conda, making the results in this paper easily replicable.
- Abstract(参考訳): 人工知能(AI)は現代の意思決定支援システムの不可欠な部分であることが多い。
AIベースの意思決定支援システムで使用される最高のパフォーマンス予測モデルは、透明性を欠いている。
説明可能な人工知能(XAI)は、人間のユーザーにその根拠を説明するAIシステムを構築することを目的としている。
XAIにおける局所的な説明は、特徴的重要性の観点から個々の予測の原因に関する情報を提供することができる。
しかし、既存の局所的説明手法の重大な欠点は、特徴の重要性に関連する不確実性を定量化できないことである。
本稿では,標準回帰と確率回帰のサポート,すなわち目標が任意のしきい値を超える確率をサポートする特徴重要説明法Calibrated Explanationsの拡張を提案する。
回帰の延長は、信頼区間を持つモデルからの予測の校正、特徴重要度の不確実な定量化、事実的および反事実的説明の両立など、校正説明のすべての利点を保っている。
標準回帰のための校正説明は、高速で信頼性があり、安定し、堅牢な説明を提供する。
確率回帰の校正説明は、任意の通常の回帰モデルから確率的説明を作成する全く新しい方法を提供し、しきい値の動的選択を可能にする。
この方法は、容易に理解可能な条件付きルールを持つモデル非依存である。
Pythonの実装はGitHubで無料で利用可能であり、pipとcondaの両方を使ってインストールすることができる。
関連論文リスト
- CAGE: Causality-Aware Shapley Value for Global Explanations [4.017708359820078]
AIモデルを説明する1つの方法は、AIモデルに対する入力機能の予測的重要性を明らかにすることである。
協調ゲーム理論に触発されたシェープリーは、特徴の重要性を説明として定量化する便利な方法を提供する。
特に、入力特徴の因果関係を尊重する外部特徴に対する新しいサンプリング手順を導入する。
論文 参考訳(メタデータ) (2024-04-17T09:43:54Z) - LaPLACE: Probabilistic Local Model-Agnostic Causal Explanations [1.0370398945228227]
本稿では,機械学習モデルに対する確率論的原因・効果説明を提供するLaPLACE-Explainerを紹介する。
LaPLACE-Explainerコンポーネントはマルコフ毛布の概念を利用して、関連する特徴と非関連する特徴の間の統計的境界を確立する。
提案手法は,LIME と SHAP の局所的精度と特徴の整合性の観点から,因果的説明と性能を向上する。
論文 参考訳(メタデータ) (2023-10-01T04:09:59Z) - Evaluating Explainability in Machine Learning Predictions through Explainer-Agnostic Metrics [0.0]
我々は,モデル予測が説明できる範囲を定量化するために,6つの異なるモデルに依存しないメトリクスを開発した。
これらのメトリクスは、局所的な重要性、グローバルな重要性、代理予測など、モデル説明可能性のさまざまな側面を測定する。
分類と回帰タスクにおけるこれらのメトリクスの実用性を実証し、これらのメトリクスを公開のために既存のPythonパッケージに統合する。
論文 参考訳(メタデータ) (2023-02-23T15:28:36Z) - Calibrating AI Models for Wireless Communications via Conformal
Prediction [55.47458839587949]
コンフォーマル予測は,通信システムにおけるAIの設計に初めて適用される。
本稿では,形式的校正保証付き決定を生成するAIモデルを得るための一般フレームワークとしての共形予測の適用について検討する。
論文 参考訳(メタデータ) (2022-12-15T12:52:23Z) - UKP-SQuARE v2 Explainability and Adversarial Attacks for Trustworthy QA [47.8796570442486]
質問回答システムは、現実の意思決定をサポートするアプリケーションにますますデプロイされています。
本質的に解釈可能なモデルやポストホックな説明可能性メソッドは、モデルがその予測にどのように到着するかをユーザが理解するのに役立ちます。
SQuAREの新バージョンであるSQuARE v2を導入し、モデルを比較するための説明可能性インフラストラクチャを提供する。
論文 参考訳(メタデータ) (2022-08-19T13:01:01Z) - VisFIS: Visual Feature Importance Supervision with
Right-for-the-Right-Reason Objectives [84.48039784446166]
モデルFI監督は、VQAモデルの精度と、Right-to-the-Right-Reasonメトリクスの性能を有意義に向上させることができることを示す。
我々の最高のパフォーマンス手法であるVisual Feature Importance Supervision (VisFIS)は、ベンチマークVQAデータセットで強いベースラインを上回ります。
説明が妥当で忠実な場合には予測がより正確になる。
論文 参考訳(メタデータ) (2022-06-22T17:02:01Z) - Automated Learning of Interpretable Models with Quantified Uncertainty [0.0]
我々は遺伝子プログラミングに基づくシンボリックレグレッション(GPSR)の新しい枠組みを導入する。
GPSRはモデルエビデンスを用いて、進化の選択段階における置換確率を定式化する。
従来のGPSR実装と比較して、解釈可能性の向上、ノイズに対する堅牢性の向上、オーバーフィッティングの低減が示されている。
論文 参考訳(メタデータ) (2022-04-12T19:56:42Z) - Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient
for Out-of-Distribution Generalization [52.7137956951533]
既存の特徴から予測器を学習するためのよりシンプルな手法を考案することは、将来の研究にとって有望な方向である、と我々は主張する。
本稿では,線形予測器を学習するための凸目標である領域調整回帰(DARE)を紹介する。
自然モデルの下では、DARE解が制限されたテスト分布の集合に対する最小最適予測器であることを証明する。
論文 参考訳(メタデータ) (2022-02-14T16:42:16Z) - Consistent Sufficient Explanations and Minimal Local Rules for
explaining regression and classification models [0.0]
我々は確率的十分説明(P-SE)の概念を拡張した
P-SEの要点は、同じ予測を維持する条件確率を計算することである。
我々は、$X$の分布を学ばず、予測を行うモデルも持たない非バイナリ機能に対処する。
論文 参考訳(メタデータ) (2021-11-08T17:27:52Z) - Learning Probabilistic Ordinal Embeddings for Uncertainty-Aware
Regression [91.3373131262391]
不確かさが唯一の確実性である。
伝統的に、直接回帰定式化を考慮し、ある確率分布の族に出力空間を変更することによって不確実性をモデル化する。
現在のレグレッション技術における不確実性をモデル化する方法は、未解決の問題である。
論文 参考訳(メタデータ) (2021-03-25T06:56:09Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。