論文の概要: Artificial to Spiking Neural Networks Conversion for Scientific Machine
Learning
- arxiv url: http://arxiv.org/abs/2308.16372v1
- Date: Thu, 31 Aug 2023 00:21:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 18:09:45.791941
- Title: Artificial to Spiking Neural Networks Conversion for Scientific Machine
Learning
- Title(参考訳): 科学機械学習のための人工-スパイクニューラルネットワーク変換
- Authors: Qian Zhang, Chenxi Wu, Adar Kahana, Youngeun Kim, Yuhang Li and George
Em Karniadakis, Priyadarshini Panda
- Abstract要約: 物理インフォームドニューラルネットワーク(PINN)をスパイキングニューラルネットワーク(SNN)に変換する手法を提案する。
SNNは従来のニューラルネットワーク(ANN)と比較してエネルギー効率が高いと期待されている
- 参考スコア(独自算出の注目度): 24.799635365988905
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We introduce a method to convert Physics-Informed Neural Networks (PINNs),
commonly used in scientific machine learning, to Spiking Neural Networks
(SNNs), which are expected to have higher energy efficiency compared to
traditional Artificial Neural Networks (ANNs). We first extend the calibration
technique of SNNs to arbitrary activation functions beyond ReLU, making it more
versatile, and we prove a theorem that ensures the effectiveness of the
calibration. We successfully convert PINNs to SNNs, enabling computational
efficiency for diverse regression tasks in solving multiple differential
equations, including the unsteady Navier-Stokes equations. We demonstrate great
gains in terms of overall efficiency, including Separable PINNs (SPINNs), which
accelerate the training process. Overall, this is the first work of this kind
and the proposed method achieves relatively good accuracy with low spike rates.
- Abstract(参考訳): 本研究では,科学機械学習で一般的に使用される物理情報ニューラルネットワーク(PINN)を,従来のニューラルネットワーク(ANN)と比較してエネルギー効率の高いスパイキングニューラルネットワーク(SNN)に変換する手法を提案する。
まず、SNNのキャリブレーション手法をReLU以外の任意のアクティベーション関数に拡張し、より汎用性を高め、キャリブレーションの有効性を保証する定理を証明した。
我々はpinnをsnsに変換することに成功し,非定常navier-stokes方程式を含む複数の微分方程式の解法において,様々な回帰問題に対する計算効率が向上した。
トレーニングプロセスを加速する分離可能なPINN(SPINN)を含む、全体的な効率の面で大きな向上を示す。
全体として、これはこの種の最初の作業であり、提案手法は比較的精度が高くスパイク率が低い。
関連論文リスト
- Scalable Mechanistic Neural Networks [52.28945097811129]
長い時間的シーケンスを含む科学機械学習応用のための拡張ニューラルネットワークフレームワークを提案する。
元のメカニスティックニューラルネットワーク (MNN) を再構成することにより、計算時間と空間の複雑さを、それぞれ、列長に関して立方体と二次体から線形へと減少させる。
大規模な実験により、S-MNNは元のMNNと精度で一致し、計算資源を大幅に削減した。
論文 参考訳(メタデータ) (2024-10-08T14:27:28Z) - Training-free Conversion of Pretrained ANNs to SNNs for Low-Power and High-Performance Applications [23.502136316777058]
人工ニューラルネットワーク(ANN)の代替としてスパイキングニューラルネットワーク(SNN)が登場した
SNNの既存の教師付き学習アルゴリズムは、ANNのアルゴリズムよりもはるかに多くのメモリと時間を必要とする。
提案手法は,事前学習したANNモデルを,追加訓練を伴わずに,高性能なSNNに変換する。
論文 参考訳(メタデータ) (2024-09-05T09:14:44Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Skip Connections in Spiking Neural Networks: An Analysis of Their Effect
on Network Training [0.8602553195689513]
従来の人工ニューラルネットワーク(ANN)の代替として、スパイキングニューラルネットワーク(SNN)が注目を集めている。
本稿では,SNNにおけるスキップ接続の影響について検討し,ANNからSNNへのモデル適応を行うハイパーパラメータ最適化手法を提案する。
本研究では,SNNの位置,タイプ,回数を最適化することで,SNNの精度と効率を大幅に向上させることができることを示す。
論文 参考訳(メタデータ) (2023-03-23T07:57:32Z) - SPIDE: A Purely Spike-based Method for Training Feedback Spiking Neural
Networks [56.35403810762512]
イベントベースの計算を伴うスパイキングニューラルネットワーク(SNN)は、ニューロモルフィックハードウェアにおけるエネルギー効率の高い応用のために、脳にインスパイアされたモデルを約束している。
本研究では,最近提案されたトレーニング手法を拡張した平衡状態(SPIDE)に対するスパイクに基づく暗黙差分法について検討した。
論文 参考訳(メタデータ) (2023-02-01T04:22:59Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Fluctuation-driven initialization for spiking neural network training [3.976291254896486]
スパイキングニューラルネットワーク(SNN)は、脳内の低出力でフォールトトレラントな情報処理を実現する。
我々は、脳内でよく見られるゆらぎ駆動型体制にインスパイアされたSNNの一般的な戦略を開発する。
論文 参考訳(メタデータ) (2022-06-21T09:48:49Z) - Linear Leaky-Integrate-and-Fire Neuron Model Based Spiking Neural
Networks and Its Mapping Relationship to Deep Neural Networks [7.840247953745616]
スパイキングニューラルネットワーク(SNN)は、生物学的可視性や教師なし学習能力など、脳にインスパイアされた機械学習アルゴリズムである。
本稿では,リニアリーキー・インテグレート・アンド・ファイア・モデル(LIF/SNN)の生物学的パラメータとReLU-AN/Deep Neural Networks(DNN)のパラメータとの正確な数学的マッピングを確立する。
論文 参考訳(メタデータ) (2022-05-31T17:02:26Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
我々は、暗黙的ニューラルネットワーク(INN)の堅牢性を保証するために、区間到達可能性分析を用いる。
INNは暗黙の方程式をレイヤとして使用する暗黙の学習モデルのクラスである。
提案手法は, INNに最先端の区間境界伝搬法を適用するよりも, 少なくとも, 一般的には, 有効であることを示す。
論文 参考訳(メタデータ) (2022-04-01T03:31:27Z) - Optimal Conversion of Conventional Artificial Neural Networks to Spiking
Neural Networks [0.0]
spiking neural networks (snns) は生物学に触発されたニューラルネットワーク (anns) である。
しきい値バランスとソフトリセット機構を組み合わせることで、重みをターゲットSNNに転送する新しい戦略パイプラインを提案する。
提案手法は,SNNのエネルギーとメモリの制限によるサポートを向上し,組込みプラットフォームに組み込むことが期待できる。
論文 参考訳(メタデータ) (2021-02-28T12:04:22Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。