Complex quantum momentum due to correlation
- URL: http://arxiv.org/abs/2308.16399v1
- Date: Thu, 31 Aug 2023 02:09:15 GMT
- Title: Complex quantum momentum due to correlation
- Authors: Matthew Albert, Xiaoyi Bao, Liang Chen
- Abstract summary: We will consider two electrons in a one-dimensional quantum well where the interaction potential between the two electrons is attractive.
We will demonstrate that this attractive interaction leads to the necessity of complex momentum solutions.
- Score: 8.228333250387815
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Real numbers provide a sufficient description of classical physics and all
measurable phenomena; however, complex numbers are occasionally utilized as a
convenient mathematical tool to aid our calculations. On the other hand, the
formalism of quantum mechanics integrates complex numbers within its
fundamental principles, and whether this arises out of necessity or not is an
important question that many have attempted to answer. Here, we will consider
two electrons in a one-dimensional quantum well where the interaction potential
between the two electrons is attractive as opposed to the usual repulsive
coulomb potential. Pairs of electrons exhibiting such effective attraction
towards each other occur in other settings, namely within superconductivity. We
will demonstrate that this attractive interaction leads to the necessity of
complex momentum solutions, which further emphasizes the significance of
complex numbers in quantum theory. The complex momentum solutions are solved
using a perturbative analysis approach in tandem with Newton's method. The
probability densities arising from these complex momentum solutions allow for a
comparison with the probability densities of the typical real momentum
solutions occurring from the standard repulsive interaction potential.
Related papers
- Electronic Correlations in Multielectron Silicon Quantum Dots [0.3793387630509845]
Silicon metal-oxide-semiconductor based quantum dots present a promising pathway for realizing practical quantum computers.
Hartree-Fock theory is an imperative tool for the electronic structure modelling of multi-electron quantum dots.
We present a Hartree-Fock-based method that accounts for these complexities for the modelling of silicon quantum dots.
arXiv Detail & Related papers (2024-07-05T06:46:38Z) - A Cooper-pair beam splitter as a feasible source of entangled electrons [0.0]
We investigate the generation of an entangled electron pair emerging from a system composed of two quantum dots attached to a superconductor Cooper pair beam splitter.
We take into account three processes: Crossed Andreev Reflection, cotuneling, and Coulomb interaction.
Several entanglement quantifiers, including quantum mutual information, negativity, and concurrence, are employed to validate our findings.
arXiv Detail & Related papers (2024-01-29T18:46:53Z) - Modeling Non-Covalent Interatomic Interactions on a Photonic Quantum
Computer [50.24983453990065]
We show that the cQDO model lends itself naturally to simulation on a photonic quantum computer.
We calculate the binding energy curve of diatomic systems by leveraging Xanadu's Strawberry Fields photonics library.
Remarkably, we find that two coupled bosonic QDOs exhibit a stable bond.
arXiv Detail & Related papers (2023-06-14T14:44:12Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Nuclear two point correlation functions on a quantum-computer [105.89228861548395]
We use current quantum hardware and error mitigation protocols to calculate response functions for a highly simplified nuclear model.
In this work we use current quantum hardware and error mitigation protocols to calculate response functions for a modified Fermi-Hubbard model in two dimensions with three distinguishable nucleons on four lattice sites.
arXiv Detail & Related papers (2021-11-04T16:25:33Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Nonperturbative Waveguide Quantum Electrodynamics [0.0]
We study in and out of equilibrium properties of waveguide quantum electrodynamics.
We uncover several surprising features ranging from symmetry-protected many-body bound states in the continuum to strong renormalization of the effective mass.
Results are relevant to experiments in superconducting qubits interacting with microwave resonators or coupled atoms to photonic crystals.
arXiv Detail & Related papers (2021-05-18T21:15:57Z) - Quantum liquids and droplets with low-energy interactions in one
dimension [0.20646127669654826]
We study the role of effective three-body repulsion, in systems with weak attractive pairwise interactions.
At zero temperature, the equations of state in both theories agree quantitatively at low densities for overall repulsion.
We develop analytical tools to investigate the properties of the theory, and obtain astounding agreement with exact numerical calculations.
arXiv Detail & Related papers (2021-03-30T16:56:01Z) - Many Electrons and the Photon Field -- The many-body structure of
nonrelativistic quantum electrodynamics [0.0]
We show how to turn electronic-structure methods into polaritonic-structure methods that are accurate from the weak to the strong-coupling regime.
We discuss how to adopt standard algorithms of electronic-structure methods to adhere to the new hybrid Fermi-Bose statistics.
arXiv Detail & Related papers (2021-02-23T11:00:06Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Operational Resource Theory of Imaginarity [48.7576911714538]
We show that quantum states are easier to create and manipulate if they only have real elements.
As an application, we show that imaginarity plays a crucial role for state discrimination.
arXiv Detail & Related papers (2020-07-29T14:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.