Photon pair generation from lithium niobate metasurface with tunable
spatial entanglement
- URL: http://arxiv.org/abs/2308.16439v1
- Date: Thu, 31 Aug 2023 03:58:24 GMT
- Title: Photon pair generation from lithium niobate metasurface with tunable
spatial entanglement
- Authors: Jihua Zhang, Jinyong Ma, Dragomir N. Neshev, Andrey A. Sukhorukov
- Abstract summary: Two-photon state with spatial entanglement is an essential resource for testing fundamental laws of quantum mechanics.
Here, we predict that ultrathin nonlinear lithium niobate metasurfaces can generate and diversely tune spatially entangled photon pairs.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Two-photon state with spatial entanglement is an essential resource for
testing fundamental laws of quantum mechanics and various quantum applications.
Its creation typically relies on spontaneous parametric down-conversion in
bulky nonlinear crystals where the tunability of spatial entanglement is
limited. Here, we predict that ultrathin nonlinear lithium niobate metasurfaces
can generate and diversely tune spatially entangled photon pairs. The spatial
properties of photons including the emission pattern, rate, and degree of
spatial entanglement are analysed theoretically with the coupled mode theory
and Schmidt decomposition method. We show that by leveraging the strong angular
dispersion of the metasurface, the degree of spatial entanglement quantified by
the Schmidt number can be decreased or increased by changing the pump laser
wavelength and a Gaussian beam size. This flexibility can facilitate diverse
quantum applications of entangled photon states generated from nonlinear
metasurfaces.
Related papers
- Quantum Imaging Using Spatially Entangled Photon Pairs from a Nonlinear Metasurface [0.4188114563181615]
metasurfaces with subwavelength thickness were recently established as versatile platforms for the enhanced and tailorable generation of entangled photon pairs.
Here, we demonstrate the unique benefits and practical potential of nonlinear metasurfaces for quantum imaging at infrared wavelengths.
We reconstruct the images of 2D objects using just a 1D detector array in the idler path and a bucket detector in the signal path, by recording the dependencies of photon coincidences on the pump wavelength.
arXiv Detail & Related papers (2024-08-06T02:25:34Z) - Single-shot characterization of photon indistinguishability with dielectric metasurfaces [0.0]
Characterizing the indistinguishability of photons is a key task in quantum photonics.
We develop a static dielectric metasurface grating without any reconfigurable elements.
We experimentally quantify the indistinguishability of photons in the time domain with fidelity over 98.4%.
arXiv Detail & Related papers (2024-01-03T01:18:48Z) - High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Quantum vortices of strongly interacting photons [52.131490211964014]
Vortices are hallmark of nontrivial dynamics in nonlinear physics.
We report on the realization of quantum vortices resulting from a strong photon-photon interaction in a quantum nonlinear optical medium.
For three photons, the formation of vortex lines and a central vortex ring attests to a genuine three-photon interaction.
arXiv Detail & Related papers (2023-02-12T18:11:04Z) - Spatially entangled photon-pairs from lithium niobate nonlocal
metasurfaces [2.4042647226715017]
Multi-photon states that are entangled in spatial or angular domains are an essential resource for quantum imaging and sensing applications.
We predict and demonstrate experimentally the generation of spatially entangled photon pairs through spontaneous parametric down-conversion.
Results pave the way to miniaturization of various quantum devices by incorporating ultra-thin metasurfaces functioning as room-temperature sources of quantum-entangled photons.
arXiv Detail & Related papers (2022-04-04T23:35:57Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Enhanced generation of non-degenerate photon-pairs in nonlinear
metasurfaces [55.41644538483948]
Non-degenerate photon-pair generation can enable orders-of-surface enhancement of the photon rate and spectral brightness.
We show that the entanglement of the photon-pairs can be tuned by varying the pump polarization, which can underpin future advances and applications of ultra-compact quantum light sources.
arXiv Detail & Related papers (2021-04-15T08:20:17Z) - Spatial entanglement engineering by pump shaping [1.0312968200748116]
We demonstrate tunable control of spatial correlations between photon pairs produced by spontaneous parametric down-conversion.
The results highlight fundamental aspects of spatial coherence and hold potential for the development of quantum technologies based on high-dimensional spatial entanglement.
arXiv Detail & Related papers (2021-03-03T10:57:35Z) - Quantum nonlinear metasurfaces [68.8204255655161]
We outline a general quantum theory of spontaneous photon-pair generation in arbitrary nonlinear photonic structures.
We discuss the first experimental results demonstrating photon-pair generation in a single nonlinear nanoantenna.
arXiv Detail & Related papers (2020-08-22T14:57:24Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.