論文の概要: Link Prediction for Wikipedia Articles as a Natural Language Inference
Task
- arxiv url: http://arxiv.org/abs/2308.16469v1
- Date: Thu, 31 Aug 2023 05:25:04 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 17:40:15.851138
- Title: Link Prediction for Wikipedia Articles as a Natural Language Inference
Task
- Title(参考訳): 自然言語推論課題としてのウィキペディア記事のリンク予測
- Authors: Chau-Thang Phan, Quoc-Nam Nguyen, Kiet Van Nguyen
- Abstract要約: 本稿では、自然言語推論(NLI)タスクとして定式化することで、ウィキペディアの記事の予測をリンクする手法を提案する。
ウィキペディア記事タスクのリンク予測のための文ペア分類に基づくシステムを実装した。
当システムでは,公開テストセットとプライベートテストセットでそれぞれ0.99996 Macro F1スコアと1.00000 Macro F1スコアを達成した。
- 参考スコア(独自算出の注目度): 1.1842520528140819
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Link prediction task is vital to automatically understanding the structure of
large knowledge bases. In this paper, we present our system to solve this task
at the Data Science and Advanced Analytics 2023 Competition "Efficient and
Effective Link Prediction" (DSAA-2023 Competition) with a corpus containing
948,233 training and 238,265 for public testing. This paper introduces an
approach to link prediction in Wikipedia articles by formulating it as a
natural language inference (NLI) task. Drawing inspiration from recent
advancements in natural language processing and understanding, we cast link
prediction as an NLI task, wherein the presence of a link between two articles
is treated as a premise, and the task is to determine whether this premise
holds based on the information presented in the articles. We implemented our
system based on the Sentence Pair Classification for Link Prediction for the
Wikipedia Articles task. Our system achieved 0.99996 Macro F1-score and 1.00000
Macro F1-score for the public and private test sets, respectively. Our team
UIT-NLP ranked 3rd in performance on the private test set, equal to the scores
of the first and second places. Our code is publicly for research purposes.
- Abstract(参考訳): リンク予測タスクは、大きな知識基盤の構造を自動的に理解するために不可欠である。
本稿では,この課題をデータサイエンス・アドバンスト・アナリティクス2023コンペティション「効率的かつ効果的なリンク予測」(dsaa-2023コンペティション)において、948,233のトレーニングと238,265の公開試験を含むコーパスを用いて解決するシステムを提案する。
本稿では、自然言語推論(NLI)タスクとして定式化することで、ウィキペディアの記事の予測をリンクする手法を提案する。
自然言語処理と理解の最近の進歩からインスピレーションを得て、リンク予測をNLIタスクとし、2つの記事間のリンクの存在を前提として扱い、この前提が記事に提示される情報に基づいて保持されるか否かを判断する。
ウィキペディア記事タスクのリンク予測のための文ペア分類に基づくシステムを実装した。
システムはそれぞれ0.99996マクロf1-scoreと1.00000マクロf1-scoreをパブリックおよびプライベートテストセットで達成した。
UIT-NLPチームは,1位と2位のスコアに匹敵する,プライベートテストセットで3位にランク付けした。
私たちのコードは研究目的で公開されています。
関連論文リスト
- A Novel Cartography-Based Curriculum Learning Method Applied on RoNLI: The First Romanian Natural Language Inference Corpus [71.77214818319054]
自然言語推論は自然言語理解のプロキシである。
ルーマニア語のNLIコーパスは公開されていない。
58Kの訓練文対からなるルーマニア初のNLIコーパス(RoNLI)を紹介する。
論文 参考訳(メタデータ) (2024-05-20T08:41:15Z) - A Text-based Approach For Link Prediction on Wikipedia Articles [1.9567015559455132]
本稿では,ウィキペディア記事のリンク予測に関するDSAA 2023 Challengeで紹介する。
POSタグ(part-of-speechタグ)を備えた従来の機械学習モデルを使用して、2つのノードにリンクがあるかどうかを予測する分類モデルをトレーニングする。
F1スコアは0.99999で,競技では7位となった。
論文 参考訳(メタデータ) (2023-09-01T08:00:43Z) - Unsupervised Sentiment Analysis of Plastic Surgery Social Media Posts [91.3755431537592]
ソーシャルメディアプラットフォームにまたがる膨大なユーザー投稿は、主に人工知能(AI)のユースケースに使われていない。
自然言語処理(NLP)は、コーパス(corpora)として知られるドキュメントの体系を利用して、人間のような言語理解でコンピュータを訓練するAIのサブフィールドである。
本研究は, 教師なし解析の応用により, コンピュータがプラスティック手術に対する否定的, 肯定的, 中立的なユーザ感情を予測できることを示した。
論文 参考訳(メタデータ) (2023-07-05T20:16:20Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
このレポートでは、ジェネラル言語理解評価のリーダーボードに関するVega v1を簡潔に紹介します。
GLUEは、質問応答、言語受容性、感情分析、テキスト類似性、パラフレーズ検出、自然言語推論を含む9つの自然言語理解タスクのコレクションである。
最適化された事前学習と微調整の戦略により、13億のモデルは4/9タスクに新しい最先端のタスクを設定し、91.3の平均スコアを達成しました。
論文 参考訳(メタデータ) (2023-02-18T09:26:35Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - Hybrid Rule-Neural Coreference Resolution System based on Actor-Critic
Learning [53.73316523766183]
コアレゾリューションシステムは2つの主要なタスクに取り組む必要がある。
ひとつのタスクは、潜在的な言及のすべてを検出することであり、もう1つは、可能な言及ごとに前者のリンクを学習することである。
本稿では,アクター・クリティカル・ラーニングに基づく複合ルール・ニューラル・コア参照解決システムを提案する。
論文 参考訳(メタデータ) (2022-12-20T08:55:47Z) - Yseop at FinSim-3 Shared Task 2021: Specializing Financial Domain
Learning with Phrase Representations [0.0]
我々は、FinSim-3共有タスク2021:財務分野のセマンティック類似性を学ぶためのアプローチを提示する。
このタスクの目的は、金融ドメインから与えられた用語のリストを最も関連性の高いハイパーネムに正しく分類することである。
平均精度は0.917、平均ランクは1.141である。
論文 参考訳(メタデータ) (2021-08-21T10:53:12Z) - NEMO: Frequentist Inference Approach to Constrained Linguistic Typology
Feature Prediction in SIGTYP 2020 Shared Task [83.43738174234053]
タイプ的特徴間の相関関係を表現するために頻繁な推論を用い、この表現を用いて、個々の特徴を予測する単純なマルチクラス推定器を訓練する。
テスト言語149言語に対して,マイクロ平均精度0.66を達成できた。
論文 参考訳(メタデータ) (2020-10-12T19:25:43Z) - Predicting Typological Features in WALS using Language Embeddings and
Conditional Probabilities: \'UFAL Submission to the SIGTYP 2020 Shared Task [1.4848029858256582]
我々は,WALSデータベースのみに基づいて,類型的特徴を予測可能な制約付きシステムを提案する。
テストデータの精度は70.7%に達し、まず共有タスクでランク付けします。
論文 参考訳(メタデータ) (2020-10-08T12:05:48Z) - Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting [0.0]
新型コロナウイルス(COVID-19)に関連する英語のつぶやきを自動的に識別するシステムを開発した。
最終アプローチでは0.9037のF1スコアを達成し,F1スコアを評価基準として総合6位にランク付けした。
論文 参考訳(メタデータ) (2020-10-01T10:54:54Z) - ALPINE: Active Link Prediction using Network Embedding [20.976178936255927]
ネットワーク埋め込みに基づくリンク予測のための ALPINE (Active Link Prediction usIng Network Embedding) を提案する。
ALPINEは拡張性があり、より少ないクエリでリンク予測精度を向上させる。
論文 参考訳(メタデータ) (2020-02-04T11:09:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。