論文の概要: MS23D: : A 3D Object Detection Method Using Multi-Scale Semantic Feature Points to Construct 3D Feature Layer
- arxiv url: http://arxiv.org/abs/2308.16518v8
- Date: Thu, 25 Jul 2024 09:32:52 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-29 18:41:36.625408
- Title: MS23D: : A 3D Object Detection Method Using Multi-Scale Semantic Feature Points to Construct 3D Feature Layer
- Title(参考訳): MS23D:マルチスケール意味的特徴点を用いた3次元物体検出手法による3次元特徴層の構築
- Authors: Yongxin Shao, Aihong Tan, Binrui Wang, Tianhong Yan, Zhetao Sun, Yiyang Zhang, Jiaxin Liu,
- Abstract要約: LiDAR点雲は、三次元空間における物体の動きと姿勢を効果的に描写することができる。
自律運転のシナリオでは、点雲の空間性と空洞性は、ボクセルベースの方法にいくつかの困難をもたらす。
我々はMS23Dと呼ばれる2段階の3Dオブジェクト検出フレームワークを提案する。
- 参考スコア(独自算出の注目度): 4.644319899528183
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: LiDAR point clouds can effectively depict the motion and posture of objects in three-dimensional space. Many studies accomplish the 3D object detection by voxelizing point clouds. However, in autonomous driving scenarios, the sparsity and hollowness of point clouds create some difficulties for voxel-based methods. The sparsity of point clouds makes it challenging to describe the geometric features of objects. The hollowness of point clouds poses difficulties for the aggregation of 3D features. We propose a two-stage 3D object detection framework, called MS23D. (1) We propose a method using voxel feature points from multi-branch to construct the 3D feature layer. Using voxel feature points from different branches, we construct a relatively compact 3D feature layer with rich semantic features. Additionally, we propose a distance-weighted sampling method, reducing the loss of foreground points caused by downsampling and allowing the 3D feature layer to retain more foreground points. (2) In response to the hollowness of point clouds, we predict the offsets between deep-level feature points and the object's centroid, making them as close as possible to the object's centroid. This enables the aggregation of these feature points with abundant semantic features. For feature points from shallow-level, we retain them on the object's surface to describe the geometric features of the object. To validate our approach, we evaluated its effectiveness on both the KITTI and ONCE datasets.
- Abstract(参考訳): LiDAR点雲は、三次元空間における物体の動きと姿勢を効果的に描写することができる。
多くの研究では、点雲の酸化による3次元物体の検出が達成されている。
しかし、自律運転のシナリオでは、点雲の空間性と空洞性は、ボキセルベースの方法にいくつかの困難をもたらす。
点雲の広がりは、物体の幾何学的特徴を記述するのを困難にしている。
点雲の空洞性は、3次元特徴の集約に困難をもたらす。
我々はMS23Dと呼ばれる2段階の3Dオブジェクト検出フレームワークを提案する。
1) マルチブランチからのボクセル特徴点を用いた3次元特徴層の構築手法を提案する。
異なる分岐からのボクセル特徴点を用いて,よりリッチなセマンティック特徴を持つ比較的コンパクトな3D特徴層を構築する。
さらに, 距離重み付きサンプリング手法を提案し, ダウンサンプリングによる前景点の損失を低減し, 3次元特徴層がより多くの前景点を保持することができるようにした。
2) 点雲の空洞化に反応して, 物体の遠心点と深度特徴点とのオフセットを予測し, 物体の遠心点にできるだけ接近させる。
これにより、これらの特徴点と豊富な意味的特徴の集約が可能になる。
浅層からの特徴点については、物体の幾何学的特徴を記述するために、物体の表面に保持する。
提案手法の有効性を,KITTIデータセットとONCEデータセットの両方で評価した。
関連論文リスト
- Robust 3D Tracking with Quality-Aware Shape Completion [67.9748164949519]
そこで本研究では,高密度および完全点の雲からなる合成対象表現について,ロバストな3次元追跡のための形状完備化により正確に表現する。
具体的には, 形状が整ったボキセル化3次元追跡フレームワークを設計し, ノイズのある歴史的予測の悪影響を軽減するために, 品質に配慮した形状完備化機構を提案する。
論文 参考訳(メタデータ) (2023-12-17T04:50:24Z) - Sparse2Dense: Learning to Densify 3D Features for 3D Object Detection [85.08249413137558]
LiDARが生成する点雲は、最先端の3Dオブジェクト検出器の主要な情報源である。
小さい、遠く、不完全な点の少ない物体は、しばしば検出するのが困難である。
Sparse2Denseは、潜在空間における点雲の密度化を学習することで、3D検出性能を効率的に向上する新しいフレームワークである。
論文 参考訳(メタデータ) (2022-11-23T16:01:06Z) - PSA-Det3D: Pillar Set Abstraction for 3D object Detection [14.788139868324155]
我々は,小物体の検出性能を向上させるために,柱集合抽象化(PSA)と前景点補償(FPC)を提案する。
KITTI 3D 検出ベンチマーク実験の結果,提案した PSA-Det3D は他のアルゴリズムよりも高い精度で小物体検出を行うことができた。
論文 参考訳(メタデータ) (2022-10-20T03:05:34Z) - Boosting 3D Object Detection via Object-Focused Image Fusion [33.616129400275156]
本稿では,画像情報をポイント特徴に融合するDeMFを提案する。
本稿では,SUN RGB-Dデータセットの課題について検討する。
論文 参考訳(メタデータ) (2022-07-21T16:32:05Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
SASA(Semantics-Augmented Set Abstraction)と呼ばれる新しい集合抽象化手法を提案する。
そこで本研究では, 推定点前景スコアに基づいて, より重要な前景点の維持を支援するセマンティックス誘導点サンプリングアルゴリズムを提案する。
実際には、SASAは、前景オブジェクトに関連する貴重な点を識別し、ポイントベースの3D検出のための特徴学習を改善するのに有効である。
論文 参考訳(メタデータ) (2022-01-06T08:54:47Z) - HVPR: Hybrid Voxel-Point Representation for Single-stage 3D Object
Detection [39.64891219500416]
3Dオブジェクト検出手法は、シーン内の3Dオブジェクトを表現するために、ボクセルベースまたはポイントベースの特徴を利用する。
本稿では,voxelベースとポイントベースの両方の特徴を有する,新しい単段3次元検出手法を提案する。
論文 参考訳(メタデータ) (2021-04-02T06:34:49Z) - Group-Free 3D Object Detection via Transformers [26.040378025818416]
3Dポイントクラウドから3Dオブジェクトを直接検出するためのシンプルで効果的な方法を紹介します。
本手法は, 点群内のすべての点から物体の特徴を, 変圧器 citevaswaniattention における注意機構の助けを借りて計算する。
ベルやホイッスルが少ないため,ScanNet V2とSUN RGB-Dの2つのベンチマークで最先端の3Dオブジェクト検出性能を実現する。
論文 参考訳(メタデータ) (2021-04-01T17:59:36Z) - Associate-3Ddet: Perceptual-to-Conceptual Association for 3D Point Cloud
Object Detection [64.2159881697615]
3Dポイント雲からの物体検出は依然として難しい課題だが、最近の研究ではディープラーニング技術によって封筒を推し進めている。
本稿では,特徴表現の堅牢性を高めるために,ドメイン適応のようなアプローチを提案する。
我々の単純で効果的なアプローチは、3Dポイントクラウドオブジェクト検出の性能を根本的に向上させ、最先端の結果を達成する。
論文 参考訳(メタデータ) (2020-06-08T05:15:06Z) - SSN: Shape Signature Networks for Multi-class Object Detection from
Point Clouds [96.51884187479585]
点雲から形状情報を探索する新しい3次元形状シグネチャを提案する。
対称, 凸船体, チェビシェフフィッティングの操作を取り入れることで, 提案した形状のシグ・ナチュアはコンパクトで有効であるだけでなく, 騒音にも頑健である。
実験により,提案手法は2つの大規模データセット上の既存手法よりも著しく優れた性能を示した。
論文 参考訳(メタデータ) (2020-04-06T16:01:41Z) - D3Feat: Joint Learning of Dense Detection and Description of 3D Local
Features [51.04841465193678]
私たちは3Dポイントクラウドに3D完全畳み込みネットワークを活用しています。
本稿では,3次元点ごとに検出スコアと記述特徴の両方を密に予測する,新しい,実践的な学習機構を提案する。
本手法は,屋内と屋外の両方のシナリオで最先端の手法を実現する。
論文 参考訳(メタデータ) (2020-03-06T12:51:09Z) - Object as Hotspots: An Anchor-Free 3D Object Detection Approach via
Firing of Hotspots [37.16690737208046]
オブジェクトレベルのアンカーを用いた既存のメソッドとは逆のアプローチを論じる。
構成モデルに着想を得て、内部の空でないボクセルの組成として、ホットスポットと呼ばれる物体を提案する。
提案手法は,OHSに基づく新しい地中真理割当て戦略を用いたアンカーフリー検出ヘッドを提案する。
論文 参考訳(メタデータ) (2019-12-30T03:02:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。