論文の概要: E3CM: Epipolar-Constrained Cascade Correspondence Matching
- arxiv url: http://arxiv.org/abs/2308.16555v1
- Date: Thu, 31 Aug 2023 08:46:12 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-01 15:15:34.305908
- Title: E3CM: Epipolar-Constrained Cascade Correspondence Matching
- Title(参考訳): E3CM: 極性制約のあるカスケード対応マッチング
- Authors: Chenbo Zhou, Shuai Su, Qijun Chen, Rui Fan
- Abstract要約: 本稿では,新しい明示的プログラミング手法として,エピポーラ制約カスケード対応(E3CM)を導入する。
従来の方法とは異なり、E3CMは事前訓練された畳み込みニューラルネットワークを利用して対応する。
本研究では,E3CMの性能を包括的実験により広範囲に評価し,既存の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 19.650006628979355
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and robust correspondence matching is of utmost importance for
various 3D computer vision tasks. However, traditional explicit
programming-based methods often struggle to handle challenging scenarios, and
deep learning-based methods require large well-labeled datasets for network
training. In this article, we introduce Epipolar-Constrained Cascade
Correspondence (E3CM), a novel approach that addresses these limitations.
Unlike traditional methods, E3CM leverages pre-trained convolutional neural
networks to match correspondence, without requiring annotated data for any
network training or fine-tuning. Our method utilizes epipolar constraints to
guide the matching process and incorporates a cascade structure for progressive
refinement of matches. We extensively evaluate the performance of E3CM through
comprehensive experiments and demonstrate its superiority over existing
methods. To promote further research and facilitate reproducibility, we make
our source code publicly available at https://mias.group/E3CM.
- Abstract(参考訳): 高精度で堅牢な対応マッチングは、様々な3Dコンピュータビジョンタスクにおいて最も重要である。
しかし、従来の明示的なプログラミングベースの手法は、しばしば難しいシナリオに対処するのに苦労し、深層学習ベースの手法では、ネットワークトレーニングのために大きなラベル付きデータセットを必要とする。
本稿では,これらの制約に対処する新しいアプローチであるE3CM(Epipolar-Constrained Cascade Cor correspondingence)を紹介する。
従来の方法とは異なり、e3cmは事前学習された畳み込みニューラルネットワークを利用して対応を一致させる。
提案手法は, エピポーラ制約を利用してマッチングプロセスを導出し, マッチの進行的洗練のためのカスケード構造を組み込む。
我々は,e3cmの性能を包括的実験により広範囲に評価し,既存の手法よりも優れていることを示す。
さらなる研究を促進し再現性を促進するため、ソースコードをhttps://mias.group/E3CMで公開しています。
関連論文リスト
- Let Me DeCode You: Decoder Conditioning with Tabular Data [0.15487122608774898]
本稿では,ラベルから派生した特徴をモデル条件付けに利用し,デコーダを動的にリコンストラクションするDeCodeを提案する。
DeCodeは3次元ラベル形状特徴の学習数値表現による条件付埋め込みの導入による3次元セグメンテーション性能の向上に重点を置いている。
以上の結果から,DeCode は従来の非条件モデルよりも高い性能を示し,計算コストの低減による精度の向上を実現している。
論文 参考訳(メタデータ) (2024-07-12T17:14:33Z) - Local Methods with Adaptivity via Scaling [71.11111992280566]
本稿では,局所的な学習手法と適応的アプローチを融合して,効率的な分散学習手法を開発することを目的とする。
従来のローカルSGD法について検討し,スケーリング機能により拡張する。
理論的解析に加えて,ニューラルネットワークのトレーニングにより,本手法の有効性を検証した。
論文 参考訳(メタデータ) (2024-06-02T19:50:05Z) - Text-Video Retrieval with Global-Local Semantic Consistent Learning [122.15339128463715]
我々は,シンプルで効果的なグローバル局所意味的一貫性学習(GLSCL)を提案する。
GLSCLは、テキストビデオ検索のためのモダリティをまたいだ潜在共有セマンティクスを活用する。
本手法はSOTAと同等の性能を実現し,計算コストの約220倍の高速化を実現している。
論文 参考訳(メタデータ) (2024-05-21T11:59:36Z) - Deep Active Learning with Structured Neural Depth Search [18.180995603975422]
Active-iNASは、複数のモデルを訓練し、各アクティブラーニングサイクルの後に、その後のサンプルをクエリする最適な一般化性能でモデルを選択する。
本稿では,SVI(Structured Variational Inference)あるいはSNDS(Structured Neural Deep Search)と呼ばれる手法を用いた新しいアクティブ戦略を提案する。
同時に、理論上は、平均場推定に基づく現在のVIベースの手法が性能を低下させる可能性があることを実証している。
論文 参考訳(メタデータ) (2023-06-05T12:00:12Z) - Boosting Low-Data Instance Segmentation by Unsupervised Pre-training
with Saliency Prompt [103.58323875748427]
この研究は、低データ体制のための新しい教師なし事前学習ソリューションを提供する。
近年のPrompting技術の成功に触発されて,QEISモデルを強化した新しい事前学習手法を導入する。
実験結果から,本手法は3つのデータセット上でのいくつかのQEISモデルを大幅に向上させることが示された。
論文 参考訳(メタデータ) (2023-02-02T15:49:03Z) - MetaGater: Fast Learning of Conditional Channel Gated Networks via
Federated Meta-Learning [46.79356071007187]
本稿では,バックボーンネットワークとチャネルゲーティングを協調的にトレーニングするための総合的なアプローチを提案する。
我々は,バックボーンネットワークとゲーティングモジュールの両方において,優れたメタ初期化を共同で学習するための,連携型メタ学習手法を開発した。
論文 参考訳(メタデータ) (2020-11-25T04:26:23Z) - FlowStep3D: Model Unrolling for Self-Supervised Scene Flow Estimation [87.74617110803189]
シーンフローとして知られるシーン内の点の3次元運動を推定することは、コンピュータビジョンにおける中核的な問題である。
本稿では,シーンフローの予測を洗練するための反復的アライメント手順の1ステップを学習する再帰的アーキテクチャを提案する。
論文 参考訳(メタデータ) (2020-11-19T23:23:48Z) - Gram Regularization for Multi-view 3D Shape Retrieval [3.655021726150368]
本稿では,グラム正規化という新しい正規化用語を提案する。
重みカーネル間の分散を強要することにより、正規化器は識別的特徴を抽出するのに役立つ。
提案したグラム正規化はデータ独立であり、ベルやホイッスルを使わずに安定かつ迅速に収束することができる。
論文 参考訳(メタデータ) (2020-11-16T05:37:24Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。