Crossed-IoT device portability of Electromagnetic Side Channel Analysis:
Challenges and Dataset
- URL: http://arxiv.org/abs/2310.03119v1
- Date: Wed, 4 Oct 2023 19:13:39 GMT
- Title: Crossed-IoT device portability of Electromagnetic Side Channel Analysis:
Challenges and Dataset
- Authors: Tharindu Lakshan Yasarathna, Lojenaa Navanesan, Simon Barque, Assanka
Sayakkara and Nhien-An Le-Khac
- Abstract summary: This study examines the impact of device variability on the accuracy and reliability of EM-SCA approaches.
We present an approach to collect the EM-SCA datasets and demonstrate the feasibility of using transfer learning to obtain more meaningful and reliable results.
- Score: 1.7811840395202345
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: IoT (Internet of Things) refers to the network of interconnected physical
devices, vehicles, home appliances, and other items embedded with sensors,
software, and connectivity, enabling them to collect and exchange data. IoT
Forensics is collecting and analyzing digital evidence from IoT devices to
investigate cybercrimes, security breaches, and other malicious activities that
may have taken place on these connected devices. In particular, EM-SCA has
become an essential tool for IoT forensics due to its ability to reveal
confidential information about the internal workings of IoT devices without
interfering these devices or wiretapping their networks. However, the accuracy
and reliability of EM-SCA results can be limited by device variability,
environmental factors, and data collection and processing methods. Besides,
there is very few research on these limitations that affects significantly the
accuracy of EM-SCA approaches for the crossed-IoT device portability as well as
limited research on the possible solutions to address such challenge.
Therefore, this empirical study examines the impact of device variability on
the accuracy and reliability of EM-SCA approaches, in particular
machine-learning (ML) based approaches for EM-SCA. We firstly presents the
background, basic concepts and techniques used to evaluate the limitations of
current EM-SCA approaches and datasets. Our study then addresses one of the
most important limitation, which is caused by the multi-core architecture of
the processors (SoC). We present an approach to collect the EM-SCA datasets and
demonstrate the feasibility of using transfer learning to obtain more
meaningful and reliable results from EM-SCA in IoT forensics of crossed-IoT
devices. Our study moreover contributes a new dataset for using deep learning
models in analysing Electromagnetic Side-Channel data with regards to the
cross-device portability matter.
Related papers
- IoT-LM: Large Multisensory Language Models for the Internet of Things [70.74131118309967]
IoT ecosystem provides rich source of real-world modalities such as motion, thermal, geolocation, imaging, depth, sensors, and audio.
Machine learning presents a rich opportunity to automatically process IoT data at scale.
We introduce IoT-LM, an open-source large multisensory language model tailored for the IoT ecosystem.
arXiv Detail & Related papers (2024-07-13T08:20:37Z) - Federated PCA on Grassmann Manifold for IoT Anomaly Detection [23.340237814344384]
Traditional machine learning-based intrusion detection systems (ML-IDS) possess limitations such as the requirement for labeled data.
Recent unsupervised ML-IDS approaches such as AutoEncoders and Generative Adversarial Networks (GAN) offer alternative solutions.
This paper proposes a novel federated unsupervised anomaly detection framework, FedPCA, that learns common representations of distributed non-i.i.d. datasets.
arXiv Detail & Related papers (2024-07-10T07:23:21Z) - Effective Intrusion Detection in Heterogeneous Internet-of-Things Networks via Ensemble Knowledge Distillation-based Federated Learning [52.6706505729803]
We introduce Federated Learning (FL) to collaboratively train a decentralized shared model of Intrusion Detection Systems (IDS)
FLEKD enables a more flexible aggregation method than conventional model fusion techniques.
Experiment results show that the proposed approach outperforms local training and traditional FL in terms of both speed and performance.
arXiv Detail & Related papers (2024-01-22T14:16:37Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
The next generation of machine learning systems must be adept at perceiving and interacting with the physical world.
sensory data from motion, thermal, geolocation, depth, wireless signals, video, and audio are increasingly used to model the states of physical environments.
Existing efforts are often specialized to a single sensory modality or prediction task.
This paper proposes MultiIoT, the most expansive and unified IoT benchmark to date, encompassing over 1.15 million samples from 12 modalities and 8 real-world tasks.
arXiv Detail & Related papers (2023-11-10T18:13:08Z) - Towards Artificial General Intelligence (AGI) in the Internet of Things
(IoT): Opportunities and Challenges [55.82853124625841]
Artificial General Intelligence (AGI) possesses the capacity to comprehend, learn, and execute tasks with human cognitive abilities.
This research embarks on an exploration of the opportunities and challenges towards achieving AGI in the context of the Internet of Things.
The application spectrum for AGI-infused IoT is broad, encompassing domains ranging from smart grids, residential environments, manufacturing, and transportation to environmental monitoring, agriculture, healthcare, and education.
arXiv Detail & Related papers (2023-09-14T05:43:36Z) - IoMT-Blockchain based Secured Remote Patient Monitoring Framework for
Neuro-Stimulation Device [0.0]
Real-time sensory data from patients may be delivered and analyzed through rapid development of wearable IoMT devices.
Data from the Internet of Things is gathered, analyzed, and stored in a single location.
Due to its decentralized nature, blockchain (BC) can alleviate these issues.
arXiv Detail & Related papers (2023-08-31T16:59:58Z) - Ensemble Learning based Anomaly Detection for IoT Cybersecurity via
Bayesian Hyperparameters Sensitivity Analysis [2.3226893628361682]
Internet of Things (IoT) integrates more than billions of intelligent devices over the globe with the capability of communicating with other connected devices.
Data collected by IoT contain a tremendous amount of information for anomaly detection.
In this paper, we present a study on using ensemble machine learning methods for enhancing IoT cybersecurity via anomaly detection.
arXiv Detail & Related papers (2023-07-20T05:23:49Z) - The Internet of Senses: Building on Semantic Communications and Edge
Intelligence [67.75406096878321]
The Internet of Senses (IoS) holds the promise of flawless telepresence-style communication for all human receptors'
We elaborate on how the emerging semantic communications and Artificial Intelligence (AI)/Machine Learning (ML) paradigms may satisfy the requirements of IoS use cases.
arXiv Detail & Related papers (2022-12-21T03:37:38Z) - Survey of Machine Learning Based Intrusion Detection Methods for
Internet of Medical Things [2.223733768286313]
Internet of Medical Things (IoMT) represents an application of the Internet of Things.
The sensitive and private nature of this data may represent a prime interest for attackers.
The use of traditional security methods on equipment that is limited in terms of storage and computing capacity is ineffective.
arXiv Detail & Related papers (2022-02-19T18:40:55Z) - Computational Intelligence and Deep Learning for Next-Generation
Edge-Enabled Industrial IoT [51.68933585002123]
We investigate how to deploy computational intelligence and deep learning (DL) in edge-enabled industrial IoT networks.
In this paper, we propose a novel multi-exit-based federated edge learning (ME-FEEL) framework.
In particular, the proposed ME-FEEL can achieve an accuracy gain up to 32.7% in the industrial IoT networks with the severely limited resources.
arXiv Detail & Related papers (2021-10-28T08:14:57Z) - Evaluating Federated Learning for Intrusion Detection in Internet of
Things: Review and Challenges [0.0]
Federated Learning (FL) has attracted a significant interest in different sectors, including healthcare and transport systems.
We evaluate a FL-enabled IDS approach based on a multiclass classifier considering different data distributions for the detection of different attacks in an IoT scenario.
We identify a set of challenges and future directions based on the existing literature and the analysis of our evaluation results.
arXiv Detail & Related papers (2021-08-02T15:22:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.