A Theoretical and Practical Framework for Evaluating Uncertainty Calibration in Object Detection
- URL: http://arxiv.org/abs/2309.00464v2
- Date: Mon, 18 Mar 2024 14:24:34 GMT
- Title: A Theoretical and Practical Framework for Evaluating Uncertainty Calibration in Object Detection
- Authors: Pedro Conde, Rui L. Lopes, Cristiano Premebida,
- Abstract summary: This work presents a novel theoretical and practical framework to evaluate object detection systems in the context of uncertainty calibration.
The robustness of the proposed uncertainty calibration metrics is shown through a series of representative experiments.
- Score: 1.8843687952462744
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The proliferation of Deep Neural Networks has resulted in machine learning systems becoming increasingly more present in various real-world applications. Consequently, there is a growing demand for highly reliable models in many domains, making the problem of uncertainty calibration pivotal when considering the future of deep learning. This is especially true when considering object detection systems, that are commonly present in safety-critical applications such as autonomous driving, robotics and medical diagnosis. For this reason, this work presents a novel theoretical and practical framework to evaluate object detection systems in the context of uncertainty calibration. This encompasses a new comprehensive formulation of this concept through distinct formal definitions, and also three novel evaluation metrics derived from such theoretical foundation. The robustness of the proposed uncertainty calibration metrics is shown through a series of representative experiments.
Related papers
- Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - Rethinking the Uncertainty: A Critical Review and Analysis in the Era of Large Language Models [42.563558441750224]
Large Language Models (LLMs) have become fundamental to a broad spectrum of artificial intelligence applications.
Current methods often struggle to accurately identify, measure, and address the true uncertainty.
This paper introduces a comprehensive framework specifically designed to identify and understand the types and sources of uncertainty.
arXiv Detail & Related papers (2024-10-26T15:07:15Z) - Towards a Framework for Deep Learning Certification in Safety-Critical Applications Using Inherently Safe Design and Run-Time Error Detection [0.0]
We consider real-world problems arising in aviation and other safety-critical areas, and investigate their requirements for a certified model.
We establish a new framework towards deep learning certification based on (i) inherently safe design, and (ii) run-time error detection.
arXiv Detail & Related papers (2024-03-12T11:38:45Z) - The Boundaries of Verifiable Accuracy, Robustness, and Generalisation in
Deep Learning [73.5095051707364]
We consider classical distribution-agnostic framework and algorithms minimising empirical risks.
We show that there is a large family of tasks for which computing and verifying ideal stable and accurate neural networks is extremely challenging.
arXiv Detail & Related papers (2023-09-13T16:33:27Z) - Neural State-Space Models: Empirical Evaluation of Uncertainty
Quantification [0.0]
This paper presents preliminary results on uncertainty quantification for system identification with neural state-space models.
We frame the learning problem in a Bayesian probabilistic setting and obtain posterior distributions for the neural network's weights and outputs.
Based on the posterior, we construct credible intervals on the outputs and define a surprise index which can effectively diagnose usage of the model in a potentially dangerous out-of-distribution regime.
arXiv Detail & Related papers (2023-04-13T08:57:33Z) - The Unreasonable Effectiveness of Deep Evidential Regression [72.30888739450343]
A new approach with uncertainty-aware regression-based neural networks (NNs) shows promise over traditional deterministic methods and typical Bayesian NNs.
We detail the theoretical shortcomings and analyze the performance on synthetic and real-world data sets, showing that Deep Evidential Regression is a quantification rather than an exact uncertainty.
arXiv Detail & Related papers (2022-05-20T10:10:32Z) - Multi Agent System for Machine Learning Under Uncertainty in Cyber
Physical Manufacturing System [78.60415450507706]
Recent advancements in predictive machine learning has led to its application in various use cases in manufacturing.
Most research focused on maximising predictive accuracy without addressing the uncertainty associated with it.
In this paper, we determine the sources of uncertainty in machine learning and establish the success criteria of a machine learning system to function well under uncertainty.
arXiv Detail & Related papers (2021-07-28T10:28:05Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
Quantifying or at least upper-bounding uncertainties is vital for safety-critical systems such as autonomous vehicles.
We evaluate uncertainty realism -- a strict quality criterion -- with a Mahalanobis distance-based statistical test.
We adopt it to the automotive domain and show that it significantly improves uncertainty realism compared to a plain encoder-decoder model.
arXiv Detail & Related papers (2021-01-08T11:56:12Z) - A general framework for defining and optimizing robustness [74.67016173858497]
We propose a rigorous and flexible framework for defining different types of robustness properties for classifiers.
Our concept is based on postulates that robustness of a classifier should be considered as a property that is independent of accuracy.
We develop a very general robustness framework that is applicable to any type of classification model.
arXiv Detail & Related papers (2020-06-19T13:24:20Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z) - A Safety Framework for Critical Systems Utilising Deep Neural Networks [13.763070043077633]
This paper presents a principled novel safety argument framework for critical systems that utilise deep neural networks.
The approach allows various forms of predictions, e.g., future reliability of passing some demands, or confidence on a required reliability level.
It is supported by a Bayesian analysis using operational data and the recent verification and validation techniques for deep learning.
arXiv Detail & Related papers (2020-03-07T23:35:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.