Multi-stage Deep Learning Artifact Reduction for Pallel-beam Computed Tomography
- URL: http://arxiv.org/abs/2309.00494v2
- Date: Fri, 17 Jan 2025 10:31:13 GMT
- Title: Multi-stage Deep Learning Artifact Reduction for Pallel-beam Computed Tomography
- Authors: Jiayang Shi, Daniel M. Pelt, K. Joost Batenburg,
- Abstract summary: We introduce a novel method that incorporates separate deep learning models at each stage of the tomography pipeline-projection, sinogram, and reconstruction-to address specific artifacts locally in a data-driven way.
Our approach includes bypass connections that feed both the outputs from previous stages and raw data to subsequent stages, minimizing the risk of error propagation.
- Score: 0.0
- License:
- Abstract: Computed Tomography (CT) using synchrotron radiation is a powerful technique that, compared to lab-CT techniques, boosts high spatial and temporal resolution while also providing access to a range of contrast-formation mechanisms. The acquired projection data is typically processed by a computational pipeline composed of multiple stages. Artifacts introduced during data acquisition can propagate through the pipeline, and degrade image quality in the reconstructed images. Recently, deep learning has shown significant promise in enhancing image quality for images representing scientific data. This success has driven increasing adoption of deep learning techniques in CT imaging. Various approaches have been proposed to incorporate deep learning into computational pipelines, but each has limitations in addressing artifacts effectively and efficiently in synchrotron CT, either in properly addressing the specific artifacts, or in computational efficiency. Recognizing these challenges, we introduce a novel method that incorporates separate deep learning models at each stage of the tomography pipeline-projection, sinogram, and reconstruction-to address specific artifacts locally in a data-driven way. Our approach includes bypass connections that feed both the outputs from previous stages and raw data to subsequent stages, minimizing the risk of error propagation. Extensive evaluations on both simulated and real-world datasets illustrate that our approach effectively reduces artifacts and outperforms comparison methods.
Related papers
- One Step Diffusion-based Super-Resolution with Time-Aware Distillation [60.262651082672235]
Diffusion-based image super-resolution (SR) methods have shown promise in reconstructing high-resolution images with fine details from low-resolution counterparts.
Recent techniques have been devised to enhance the sampling efficiency of diffusion-based SR models via knowledge distillation.
We propose a time-aware diffusion distillation method, named TAD-SR, to accomplish effective and efficient image super-resolution.
arXiv Detail & Related papers (2024-08-14T11:47:22Z) - Artifact Reduction in 3D and 4D Cone-beam Computed Tomography Images with Deep Learning -- A Review [0.0]
Deep learning techniques have been used to improve image quality in cone-beam computed tomography (CBCT)
We provide an overview of deep learning techniques that have successfully been shown to reduce artifacts in 3D, as well as in time-resolved (4D) CBCT.
One of the key findings of this work is an observed trend towards the use of generative models including GANs and score-based or diffusion models.
arXiv Detail & Related papers (2024-03-27T13:46:01Z) - Unsupervised Domain Transfer with Conditional Invertible Neural Networks [83.90291882730925]
We propose a domain transfer approach based on conditional invertible neural networks (cINNs)
Our method inherently guarantees cycle consistency through its invertible architecture, and network training can efficiently be conducted with maximum likelihood.
Our method enables the generation of realistic spectral data and outperforms the state of the art on two downstream classification tasks.
arXiv Detail & Related papers (2023-03-17T18:00:27Z) - Minimizing the Accumulated Trajectory Error to Improve Dataset
Distillation [151.70234052015948]
We propose a novel approach that encourages the optimization algorithm to seek a flat trajectory.
We show that the weights trained on synthetic data are robust against the accumulated errors perturbations with the regularization towards the flat trajectory.
Our method, called Flat Trajectory Distillation (FTD), is shown to boost the performance of gradient-matching methods by up to 4.7%.
arXiv Detail & Related papers (2022-11-20T15:49:11Z) - Deep Unfolding of the DBFB Algorithm with Application to ROI CT Imaging
with Limited Angular Density [15.143939192429018]
This paper presents a new method for reconstructing regions of interest (ROI) from a limited number of computed (CT) measurements.
Deep methods are fast, and they can reach high reconstruction quality by leveraging information from datasets.
We introduce an unfolding neural network called UDBFB designed for ROI reconstruction from limited data.
arXiv Detail & Related papers (2022-09-27T09:10:57Z) - Deep Learning for Material Decomposition in Photon-Counting CT [0.5801044612920815]
We present a novel deep-learning solution for material decomposition in PCCT, based on an unrolled/unfolded iterative network.
Our approach outperforms a maximum likelihood estimation, a variational method, as well as a fully-learned network.
arXiv Detail & Related papers (2022-08-05T19:05:16Z) - Multi-Channel Convolutional Analysis Operator Learning for Dual-Energy
CT Reconstruction [108.06731611196291]
We develop a multi-channel convolutional analysis operator learning (MCAOL) method to exploit common spatial features within attenuation images at different energies.
We propose an optimization method which jointly reconstructs the attenuation images at low and high energies with a mixed norm regularization on the sparse features.
arXiv Detail & Related papers (2022-03-10T14:22:54Z) - CoReD: Generalizing Fake Media Detection with Continual Representation
using Distillation [17.97648576135166]
We propose Continual Representation using Distillation (CoReD) method that employs the concept of Continual Learning (CoL), Representation Learning (ReL), and Knowledge Distillation (KD)
We design CoReD to perform sequential domain adaptation tasks on new deepfake and GAN-generated synthetic face datasets.
Our extensive experimental results demonstrate that our method is efficient at domain adaptation to detect low-quality deepfakes videos and GAN-generated images.
arXiv Detail & Related papers (2021-07-06T06:07:17Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Data Consistent CT Reconstruction from Insufficient Data with Learned
Prior Images [70.13735569016752]
We investigate the robustness of deep learning in CT image reconstruction by showing false negative and false positive lesion cases.
We propose a data consistent reconstruction (DCR) method to improve their image quality, which combines the advantages of compressed sensing and deep learning.
The efficacy of the proposed method is demonstrated in cone-beam CT with truncated data, limited-angle data and sparse-view data, respectively.
arXiv Detail & Related papers (2020-05-20T13:30:49Z) - Learned Spectral Computed Tomography [0.0]
We propose a Deep Learning imaging method for Spectral Photon-Counting Computed Tomography.
The method takes the form of a two-step learned primal-dual algorithm that is trained using case-specific data.
The proposed approach is characterised by fast reconstruction capability and high imaging performance, even in limited-data cases.
arXiv Detail & Related papers (2020-03-09T13:39:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.