論文の概要: Indexing Irises by Intrinsic Dimension
- arxiv url: http://arxiv.org/abs/2309.00705v1
- Date: Fri, 1 Sep 2023 19:19:53 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 01:47:40.155727
- Title: Indexing Irises by Intrinsic Dimension
- Title(参考訳): 内在次元によるインデクシングirises
- Authors: J. Michael Rozmus
- Abstract要約: 正規化虹彩画像の小さな未閉塞部分を未知の個人を迅速に識別するための鍵部分として選択する。
アイリス画像がアイリスデータベースに提示されて識別されると、4D固有空間内の鍵部分の位置付近で検索が開始される。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 28,000+ high-quality iris images of 1350 distinct eyes from 650+ different
individuals from a relatively diverse university town population were
collected. A small defined unobstructed portion of the normalized iris image is
selected as a key portion for quickly identifying an unknown individual when
submitting an iris image to be matched to a database of enrolled irises of the
1350 distinct eyes. The intrinsic dimension of a set of these key portions of
the 1350 enrolled irises is measured to be about four (4). This set is mapped
to a four-dimensional intrinsic space by principal components analysis (PCA).
When an iris image is presented to the iris database for identification, the
search begins in the neighborhood of the location of its key portion in the 4D
intrinsic space, typically finding a correct identifying match after comparison
to only a few percent of the database.
- Abstract(参考訳): 比較的多様な大学町からの650以上の個人から、1350個の目からなる28,000以上の高品質虹彩画像が収集された。
正規化虹彩画像の小さな未閉塞部分を、1350の異なる眼の登録虹彩のデータベースに一致する虹彩画像を送信する際に、未知の人物を迅速に識別するための鍵部分として選択する。
登録されたアイライズ1350のこれらのキー部分の集合の内在次元は、約4(4)である。
この集合は主成分分析(PCA)により4次元固有空間に写像される。
識別のためにアイリス画像がアイリスデータベースに提示されると、検索は4d内在空間におけるキー部分の位置の近傍で開始され、データベースのほんの数パーセントと比較して正しい識別マッチングを見つける。
関連論文リスト
- On the Feasibility of Creating Iris Periocular Morphed Images [9.021226651004055]
本研究は、画像レベルで虹彩形態を生成するためのエンドツーエンドフレームワークを提案する。
ペア対象の選択、セグメンテーション、形態形成、新しい虹彩認識システムなど、異なる段階を考慮する。
その結果,従来の虹彩認識システムと混同できる非常にリアルな画像が得られた。
論文 参考訳(メタデータ) (2024-08-24T06:48:46Z) - EyePreserve: Identity-Preserving Iris Synthesis [8.973296574093506]
本稿では,アイリス画像の完全データ駆動型,アイデンティティ保存型,瞳孔径変化型合成法を提案する。
提案手法の直接的な応用は、(a)虹彩認識のための既存の生体計測データセットの合成、または強化、および(b)瞳孔拡張に有意な差がある虹彩画像対を調べるための法医学の専門家を支援することである。
論文 参考訳(メタデータ) (2023-12-19T10:29:29Z) - Ethnicity and Biometric Uniqueness: Iris Pattern Individuality in a West
African Database [0.2812395851874055]
ナイジェリアの大学で収集された画像から得られた虹彩パターンの比較を13万件以上行った。
AFHIRISデータベースでは,メラノサイトの粗い前層によるエントロピーの低下を測定した。
人口差にもかかわらず、この西アフリカの人口の虹彩パターンの比較により、個人性は頑健に識別できると結論付けている。
論文 参考訳(メタデータ) (2023-09-12T18:51:28Z) - Iris super-resolution using CNNs: is photo-realism important to iris
recognition? [67.42500312968455]
特に畳み込みニューラルネットワーク(CNN)を用いた単一画像超解像技術が出現している
本研究では, 虹彩認識のためのCNNを用いて, 単一画像の超解像を探索する。
彼らは、近赤外線虹彩画像の1.872のデータベースと携帯電話画像データベースのアプローチを検証する。
論文 参考訳(メタデータ) (2022-10-24T11:19:18Z) - End-to-End Context-Aided Unicity Matching for Person Re-identification [100.02321122258638]
本稿では,人間同士の一致関係を学習・精査するための,エンドツーエンドの対人一意整合アーキテクチャを提案する。
サンプルのグローバルコンテキスト関係を用いて,ソフトマッチング結果を洗練し,両部グラフマッチングにより一致ユニシティに到達する。
実世界における人物再識別の応用を十分に考慮し, ワンショットとマルチショットの双方で一様マッチングを実現する。
論文 参考訳(メタデータ) (2022-10-20T07:33:57Z) - Very Low-Resolution Iris Recognition Via Eigen-Patch Super-Resolution
and Matcher Fusion [69.53542497693086]
局所像パッチの固有変換に基づいて虹彩画像の再構成に用いる超解像アルゴリズムの評価を行った。
コントラストの強化は再現性を向上させるのに用いられ、マーカ融合は虹彩認識性能を改善するために採用されている。
論文 参考訳(メタデータ) (2022-10-18T11:25:19Z) - Human Saliency-Driven Patch-based Matching for Interpretable Post-mortem
Iris Recognition [5.7477871490034005]
そこで本研究では,ヒトの唾液度を学習し,完全に解釈可能な比較結果を与える,独自の死後虹彩認識手法を提案する。
提案手法は, 商業的(非人間解釈可能な) VeriEye 手法よりも優れた結果を示した。
論文 参考訳(メタデータ) (2022-08-03T19:40:44Z) - Direct attacks using fake images in iris verification [59.68607707427014]
BioSecベースラインデータベースの実際のアイリスから偽アイリス画像のデータベースが作成されている。
本システムは直接攻撃に対して脆弱であることを示し,対策の重要性を指摘する。
論文 参考訳(メタデータ) (2021-10-30T05:01:06Z) - Automatic Main Character Recognition for Photographic Studies [78.88882860340797]
画像の主人公は、最初に見る人の注意を引く最も重要な人間である。
画像中の主文字の同定は,従来の写真研究やメディア分析において重要な役割を担っている。
機械学習に基づく人間のポーズ推定を用いて主文字を識別する手法を提案する。
論文 参考訳(メタデータ) (2021-06-16T18:14:45Z) - An approach to human iris recognition using quantitative analysis of
image features and machine learning [0.5243460995467893]
本稿では,虹彩認識のための効率的なフレームワークを4段階に分けて提案する。
その結果、提案手法は99.64%の精度で信頼性の高い予測を行うことができることを確認した。
論文 参考訳(メタデータ) (2020-09-12T23:23:33Z) - Compact Deep Aggregation for Set Retrieval [87.52470995031997]
画像の大規模データセットから複数の顔を含む画像を取得することに焦点を当てる。
ここでは、セットは各画像の顔記述子で構成され、複数のIDに対するクエリが与えられた後、すべてのIDを含む画像を取得することが目標である。
このコンパクトディスクリプタは,画像毎に最大2面まで識別性の低下が最小限に抑えられ,その後徐々に劣化することを示す。
論文 参考訳(メタデータ) (2020-03-26T08:43:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。