論文の概要: An approach to human iris recognition using quantitative analysis of
image features and machine learning
- arxiv url: http://arxiv.org/abs/2009.05880v1
- Date: Sat, 12 Sep 2020 23:23:33 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-19 07:58:44.541267
- Title: An approach to human iris recognition using quantitative analysis of
image features and machine learning
- Title(参考訳): 画像特徴量解析と機械学習を用いた人間の虹彩認識へのアプローチ
- Authors: Abolfazl Zargari Khuzani, Najmeh Mashhadi, Morteza Heidari, Donya
Khaledyan
- Abstract要約: 本稿では,虹彩認識のための効率的なフレームワークを4段階に分けて提案する。
その結果、提案手法は99.64%の精度で信頼性の高い予測を行うことができることを確認した。
- 参考スコア(独自算出の注目度): 0.5243460995467893
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Iris pattern is a unique biological feature for each individual, making
it a valuable and powerful tool for human identification. In this paper, an
efficient framework for iris recognition is proposed in four steps. (1) Iris
segmentation (using a relative total variation combined with Coarse Iris
Localization), (2) feature extraction (using Shape&density, FFT, GLCM, GLDM,
and Wavelet), (3) feature reduction (employing Kernel-PCA) and (4)
classification (applying multi-layer neural network) to classify 2000 iris
images of CASIA-Iris-Interval dataset obtained from 200 volunteers. The results
confirm that the proposed scheme can provide a reliable prediction with an
accuracy of up to 99.64%.
- Abstract(参考訳): アイリスパターンは個体ごとにユニークな生物学的特徴であり、人間の識別に有用で強力なツールである。
本稿では,虹彩認識のための効率的な枠組みを4つのステップで提案する。
1)Irisセグメンテーション(粗いアイリスの局所化を併用)、(2)特徴抽出(形状・密度・FFT・GLCM・GLDM・ウェーブレット)、(3)特徴低減(カーネルPCAの活用)、(4)分類(多層ニューラルネットワークの適用)により、ボランティア200名から得られたCASIA-Iris-Intervalデータセットの2000アイリス画像を分類した。
その結果,提案手法は最大99.64%の精度で信頼性の高い予測が可能となった。
関連論文リスト
- On the Feasibility of Creating Iris Periocular Morphed Images [9.021226651004055]
本研究は、画像レベルで虹彩形態を生成するためのエンドツーエンドフレームワークを提案する。
ペア対象の選択、セグメンテーション、形態形成、新しい虹彩認識システムなど、異なる段階を考慮する。
その結果,従来の虹彩認識システムと混同できる非常にリアルな画像が得られた。
論文 参考訳(メタデータ) (2024-08-24T06:48:46Z) - Iris-SAM: Iris Segmentation Using a Foundation Model [10.902536447343465]
基礎モデルviz., Segment Anything Model (SAM) から画素レベルの虹彩分割モデルを開発する。
この研究の主な貢献は、眼画像上のSAMの微調整中に異なる損失関数を統合することである。
ND-IRIS-0405、CASIA-Iris-Interval-v3、IIT-Delhi-Irisデータセットの実験は、虹彩セグメンテーションのタスクに対する訓練されたモデルの有効性を伝達する。
論文 参考訳(メタデータ) (2024-02-09T16:08:16Z) - Single-Cell Deep Clustering Method Assisted by Exogenous Gene
Information: A Novel Approach to Identifying Cell Types [50.55583697209676]
我々は,細胞間のトポロジ的特徴を効率的に捉えるために,注目度の高いグラフオートエンコーダを開発した。
クラスタリング過程において,両情報の集合を統合し,細胞と遺伝子の特徴を再構成し,識別的表現を生成する。
本研究は、細胞の特徴と分布に関する知見を高め、疾患の早期診断と治療の基礎となる。
論文 参考訳(メタデータ) (2023-11-28T09:14:55Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Artificial Pupil Dilation for Data Augmentation in Iris Semantic
Segmentation [0.0]
現代の虹彩認識のアプローチでは、深層学習を用いて虹彩の有効部分を眼の他の部分から切り離す。
本稿では,新しいデータ拡張手法を導入することにより,虹彩意味分節システムの精度を向上させることを目的とする。
論文 参考訳(メタデータ) (2022-12-24T13:31:56Z) - Super-Resolution and Image Re-projection for Iris Recognition [67.42500312968455]
異なるディープラーニングアプローチを用いた畳み込みニューラルネットワーク(CNN)は、解像度の低い画像から現実的なテクスチャときめ細かい詳細を復元しようとする。
本研究は、虹彩認識環境における虹彩超解法(SR)に対するこれらのアプローチの実現可能性について検討する。
その結果,CNNと画像再投影は,認識システムの精度向上に有効であることが示唆された。
論文 参考訳(メタデータ) (2022-10-20T09:46:23Z) - Iris Recognition Based on SIFT Features [63.07521951102555]
アイリス画像の認識にはSIFT(Scale Invariant Feature Transformation)を用いる。
我々は、SIFT演算子を用いて、スケール空間における特徴SIFT特徴点を抽出し、特徴点周辺のテクスチャ情報に基づいてマッチングを行う。
また、SIFT手法と、極座標変換とLog-Gaborウェーブレットに基づく一般的なマッチング手法の相補性を示す。
論文 参考訳(メタデータ) (2021-10-30T04:55:33Z) - Toward Accurate and Reliable Iris Segmentation Using Uncertainty
Learning [96.72850130126294]
高精度で信頼性の高いアイリスセグメンテーションのためのアイリスU変換器(アイリスUsformer)を提案する。
IrisUsformerの精度向上のために,位置感応操作と再パッケージング変圧器ブロックを採用することで精巧に設計する。
IrisUsformer は SOTA IrisParseNet の 35% MAC を用いて, セグメンテーション精度の向上を図っている。
論文 参考訳(メタデータ) (2021-10-20T01:37:19Z) - VerSe: A Vertebrae Labelling and Segmentation Benchmark for
Multi-detector CT Images [121.31355003451152]
大規模Vertebrae Challenge(VerSe)は、2019年と2020年に開催されたMICCAI(International Conference on Medical Image Computing and Computer Assisted Intervention)と共同で設立された。
本評価の結果を報告するとともに,脊椎レベル,スキャンレベル,および異なる視野での性能変化について検討した。
論文 参考訳(メタデータ) (2020-01-24T21:09:18Z) - Segmentation-Aware and Adaptive Iris Recognition [24.125681602124477]
アイリス画像の品質は、アイリスマッチング精度を劣化させることが知られている。
眼周囲情報は本質的にそのような虹彩画像に埋め込まれており、そのような非理想的なシナリオ下で虹彩認識を支援するために利用することができる。
本稿では,より精度の低いアイリス認識のためのセグメンテーション支援適応フレームワークを提案する。
論文 参考訳(メタデータ) (2019-12-31T04:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。