Microscopic scale of quantum phase transitions: from doped semiconductors to spin chains, cold gases and moiré superlattices
- URL: http://arxiv.org/abs/2309.00749v3
- Date: Wed, 10 Jul 2024 21:57:04 GMT
- Title: Microscopic scale of quantum phase transitions: from doped semiconductors to spin chains, cold gases and moiré superlattices
- Authors: Andrey Rogachev,
- Abstract summary: We develop a new method of data analysis to identify microscopic processes leading to quantum phase transitions (QPTs)
We show that for many systems, the scaled data near QPTs can be approximated by the generic exponential dependence introduced in the scaling theory of localization.
We have also conjectured that for interacting systems, the temperature cuts the renormalization group flow at the length travelled by a system-specific elementary excitation.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the vicinity of continuous quantum phase transitions (QPTs), quantum systems become scale-invariant and can be grouped into universality classes characterized by sets of critical exponents. We have found that despite scale-invariance and universality, the experimental data still contain information related to the microscopic processes and scales governing QPTs. We have found that for many systems, the scaled data near QPTs can be approximated by the generic exponential dependence introduced in the scaling theory of localization; this dependence includes as a parameter a microscopic seeding scale of the renormalization group, $L_0$. We have also conjectured that for interacting systems, the temperature cuts the renormalization group flow at the length travelled by a system-specific elementary excitation over the life-time set by the Planckian time, $\tau_P$=$\hbar/k_BT$. We have adapted this approach for QPTs in several systems and showed that $L_0$ extracted from experiment is comparable to physically-expected minimal length scales, namely (i) the mean free path for metal-insulator transition in doped semiconductor Si:B, (ii) the distance between spins in Heisenberg and Ising chains, (iii) the period of an optical lattice for cold atom boson gases, and (iv) the period of a moir\'e superlattice for the Mott QPT in dichalcogenide bilayers. The metal-insulator transition in Si:P has been explained using a non-interacting version of the model. In two companion papers, we show that in superconducting systems, $L_0$ is comparable to superconducting coherence length, and in quantum Hall systems, to the magnetic length. The developed new method of data analysis identifies microscopic processes leading to QPTs and quantitatively explains and unifies a large body of experimental data.
Related papers
- Clustering theorem in 1D long-range interacting systems at arbitrary temperatures [0.0]
This paper delves into a fundamental aspect of quantum statistical mechanics -- the absence of thermal phase transitions in one-dimensional (1D) systems.
We successfully derive a clustering theorem applicable to a wide range of interaction decays at arbitrary temperatures.
Our findings indicate the absence of phase transitions in 1D systems with super-polynomially decaying interactions.
arXiv Detail & Related papers (2024-03-18T02:54:55Z) - Experimental demonstration of scalable cross-entropy benchmarking to
detect measurement-induced phase transitions on a superconducting quantum
processor [0.0]
We propose a protocol to detect entanglement phase transitions using linear cross-entropy.
We demonstrate this protocol in systems with one-dimensional and all-to-all connectivities on IBM's quantum hardware on up to 22 qubits.
Our demonstration paves the way for studies of measurement-induced entanglement phase transitions and associated critical phenomena on larger near-term quantum systems.
arXiv Detail & Related papers (2024-03-01T19:35:54Z) - Quantum phase transitions in quantum Hall and other topological systems:
role of the Planckian time [0.0]
We show that experimental data in the quantum critical regime for both integer and fractional QHEs can be quantitatively explained.
We show that the model also provides quantitative description of QPTs between the ground states of anomalous QHE and axion and Chern insulators.
arXiv Detail & Related papers (2023-09-01T22:25:48Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Observation of a quantum phase transition in the quantum Rabi model with
a single trapped ion [0.0]
Quantum phase transitions (QPTs) are usually associated with many-body systems with large degrees of freedom approaching the thermodynamic limit.
It has been realized that a QPT can occur in a simple system composed of only a two-level atom and a single-mode bosonic field.
We report the first experimental demonstration of a QPT in the quantum Rabi model using a single trapped ion.
arXiv Detail & Related papers (2021-02-10T13:03:37Z) - Evolution of a Non-Hermitian Quantum Single-Molecule Junction at
Constant Temperature [62.997667081978825]
We present a theory for describing non-Hermitian quantum systems embedded in constant-temperature environments.
We find that the combined action of probability losses and thermal fluctuations assists quantum transport through the molecular junction.
arXiv Detail & Related papers (2021-01-21T14:33:34Z) - Finite-component dynamical quantum phase transitions [0.0]
We show two types of dynamical quantum phase transitions (DQPTs) in a quantum Rabi model.
One refers to distinct phases according to long-time averaged order parameters, the other is focused on the non-analytical behavior emerging in the rate function of the Loschmidt echo.
We find the critical times at which the rate function becomes non-analytical, showing its associated critical exponent as well as the corrections introduced by a finite frequency ratio.
arXiv Detail & Related papers (2020-08-31T17:31:17Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.