Quantum phase transition in small-size 1d and 2d Josephson junction arrays: analysis of the experiments within the interacting plasmons picture
- URL: http://arxiv.org/abs/2411.06492v1
- Date: Sun, 10 Nov 2024 15:20:25 GMT
- Title: Quantum phase transition in small-size 1d and 2d Josephson junction arrays: analysis of the experiments within the interacting plasmons picture
- Authors: Samuel Feldman, Andrey Rogachev,
- Abstract summary: Josephson junction (JJ) arrays can exhibit either a superconducting or insulating state, separated by a quantum phase transition (QPT)
In this work, we analyzed published data on QPTs in three one-dimensional arrays and two two-dimensional arrays using a recently developed model of QPTs.
- Score: 0.0
- License:
- Abstract: Theoretically, Josephson junction (JJ) arrays can exhibit either a superconducting or insulating state, separated by a quantum phase transition (QPT). In this work, we analyzed published data on QPTs in three one-dimensional arrays and two two-dimensional arrays using a recently developed phenomenological model of QPTs. The model is based on the insight that the scaled experimental data depend in a universal way on two characteristic length scales of the system: the microscopic length scale $L_0$ from which the renormalization group flow starts, and the dephasing length, $L_{\varphi}(T)$ as given by the distance travelled by system-specific elementary excitations over the Planckian time. Our analysis reveals that the data for all five arrays (both 1D and 2D) can be quantitatively and self-consistently explained within the framework of interacting superconducting plasmons. In this picture, $L_{\varphi}=v_p\hbar/k_B T$, and $L_0 \approx \Lambda$, where $v_p$ is the speed of the plasmons and $\Lambda$ is the Coulomb screening length of the Cooper pairs. We also observe that, in 1D arrays, the transition is significantly shifted towards the insulating side compared to the predictions of the sine-Gordon model. Finally, we discuss similarities and differences with recent microwave studies of extremely long JJ chains, as well as with the pair-breaking QPT observed in superconducting nanowires and films.
Related papers
- Supersolidity in Rydberg tweezer arrays [0.41232474244672235]
Rydberg tweezer arrays provide a versatile platform to explore quantum magnets with dipolar XY or van-der-Waals Ising ZZ interactions.
We propose a scheme combining dipolar and van-der-Waals interactions between Rydberg atoms, where the amplitude of the latter can be greater than that of the former.
For repulsive interactions, we predict the existence of a robust supersolid phase in current Rydberg tweezer experiments.
arXiv Detail & Related papers (2024-07-17T17:21:30Z) - KPZ scaling from the Krylov space [83.88591755871734]
Recently, a superdiffusion exhibiting the Kardar-Parisi-Zhang scaling in late-time correlators and autocorrelators has been reported.
Inspired by these results, we explore the KPZ scaling in correlation functions using their realization in the Krylov operator basis.
arXiv Detail & Related papers (2024-06-04T20:57:59Z) - Percolation as a confinement order parameter in $\mathbb{Z}_2$ lattice
gauge theories [0.46873264197900916]
We propose percolation-inspired order parameters (POPs) to probe confinement of dynamical matter in $mathbbZ$ LGTs.
Our proposed POPs provide a geometric perspective of confinement and are directly accessible to snapshots obtained in quantum simulators.
arXiv Detail & Related papers (2024-01-16T19:00:08Z) - Measurement-induced phase transition for free fermions above one dimension [46.176861415532095]
Theory of the measurement-induced entanglement phase transition for free-fermion models in $d>1$ dimensions is developed.
Critical point separates a gapless phase with $elld-1 ln ell$ scaling of the second cumulant of the particle number and of the entanglement entropy.
arXiv Detail & Related papers (2023-09-21T18:11:04Z) - Microscopic scale of quantum phase transitions: from doped semiconductors to spin chains, cold gases and moiré superlattices [0.0]
We develop a new method of data analysis to identify microscopic processes leading to quantum phase transitions (QPTs)
We show that for many systems, the scaled data near QPTs can be approximated by the generic exponential dependence introduced in the scaling theory of localization.
We have also conjectured that for interacting systems, the temperature cuts the renormalization group flow at the length travelled by a system-specific elementary excitation.
arXiv Detail & Related papers (2023-09-01T22:13:00Z) - Photoinduced prethermal order parameter dynamics in the two-dimensional
large-$N$ Hubbard-Heisenberg model [77.34726150561087]
We study the microscopic dynamics of competing ordered phases in a two-dimensional correlated electron model.
We simulate the light-induced transition between two competing phases.
arXiv Detail & Related papers (2022-05-13T13:13:31Z) - Contrasting pseudo-criticality in the classical two-dimensional
Heisenberg and $\mathrm{RP}^2$ models: zero-temperature phase transition
versus finite-temperature crossover [0.0]
We compare the two-dimensional classical Heisenberg and $mathrmRP2$ models.
For the Heisenberg model, we find no signs of a finite-temperature phase transition.
For the $mathrmRP2$ model, we observe an abrupt onset of scaling behaviour.
arXiv Detail & Related papers (2022-02-15T17:35:15Z) - Ground-state phase diagram of quantum link electrodynamics in $(2+1)$-d [0.0]
We study a lattice gauge theory where the gauge fields, represented by spin-$frac12$ operators are coupled to a single flavor of staggered fermions.
Using matrix product states on infinite cylinders with increasing diameter, we conjecture its phase diagram in $(2+1)$-d.
Our study reveals a rich phase diagram with exotic phases and interesting phase transitions to a potential liquid-like phase.
arXiv Detail & Related papers (2021-12-01T19:00:03Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Engineering the Radiative Dynamics of Thermalized Excitons with Metal
Interfaces [58.720142291102135]
We analyze the emission properties of excitons in TMDCs near planar metal interfaces.
We find suppression or enhancement of emission relative to the point dipole case by several orders of magnitude.
nanoscale optical cavities are a viable pathway to generating long-lifetime exciton states in TMDCs.
arXiv Detail & Related papers (2021-10-11T19:40:24Z) - Mesoscopic quantum superposition states of weakly-coupled matter-wave
solitons [58.720142291102135]
We establish quantum features of an atomic soliton Josephson junction (SJJ) device.
We show that the SJJ-model in quantum domain exhibits unusual features due to its effective nonlinear strength proportional to the square of total particle number.
We have shown that the obtained quantum state is more resistant to few particle losses from the condensates if tiny components of entangled Fock states are present.
arXiv Detail & Related papers (2020-11-26T09:26:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.