論文の概要: Non-Asymptotic Bounds for Adversarial Excess Risk under Misspecified
Models
- arxiv url: http://arxiv.org/abs/2309.00771v1
- Date: Sat, 2 Sep 2023 00:51:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-07 01:14:43.795790
- Title: Non-Asymptotic Bounds for Adversarial Excess Risk under Misspecified
Models
- Title(参考訳): 非漸近的境界と不特定モデルによる逆行性過大リスク
- Authors: Changyu Liu, Yuling Jiao, Junhui Wang, and Jian Huang
- Abstract要約: 本研究では,ある平滑な条件下での分布的敵攻撃によって引き起こされるリスクに,敵対的リスクが等価であることを示す。
対向推定器の一般化性能を評価するため, 対向過大リスクについて検討した。
- 参考スコア(独自算出の注目度): 9.65010022854885
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a general approach to evaluating the performance of robust
estimators based on adversarial losses under misspecified models. We first show
that adversarial risk is equivalent to the risk induced by a distributional
adversarial attack under certain smoothness conditions. This ensures that the
adversarial training procedure is well-defined. To evaluate the generalization
performance of the adversarial estimator, we study the adversarial excess risk.
Our proposed analysis method includes investigations on both generalization
error and approximation error. We then establish non-asymptotic upper bounds
for the adversarial excess risk associated with Lipschitz loss functions. In
addition, we apply our general results to adversarial training for
classification and regression problems. For the quadratic loss in nonparametric
regression, we show that the adversarial excess risk bound can be improved over
those for a general loss.
- Abstract(参考訳): 本稿では,不特定モデルにおける逆損失に基づくロバスト推定器の性能評価手法を提案する。
まず,特定の平滑性条件下での分布的敵意攻撃によって引き起こされるリスクと,敵意リスクが等価であることを示す。
これにより、敵のトレーニング手順が明確に定義される。
対向推定器の一般化性能を評価するため, 対向過大リスクについて検討した。
提案手法は一般化誤差と近似誤差の両方について検討する。
次に,リプシッツ損失関数に付随する敵対的過剰リスクに対する非漸近上界を定式化する。
さらに,分類・回帰問題に対する敵意訓練に汎用的な結果を適用する。
非パラメトリック回帰における二次的損失については、一般損失よりも対向的過剰リスク境界を改善できることが示される。
関連論文リスト
- Data-driven decision-making under uncertainty with entropic risk measure [5.407319151576265]
エントロピーリスク尺度は、不確実な損失に関連する尾のリスクを考慮に入れた高い意思決定に広く用いられている。
経験的エントロピーリスク推定器を劣化させるため, 強く一貫したブートストラップ手法を提案する。
検証性能のバイアスが補正されない場合,クロスバリデーション手法は,保険業者のアウト・オブ・サンプルリスクを著しく高める可能性があることを示す。
論文 参考訳(メタデータ) (2024-09-30T04:02:52Z) - Error Bounds of Supervised Classification from Information-Theoretic Perspective [0.0]
我々は、情報理論の観点から、教師付き分類にディープニューラルネットワークを使用する場合の予測リスクのバウンダリについて検討する。
経験的リスクをさらに分解したモデルリスクとフィッティングエラーを導入する。
論文 参考訳(メタデータ) (2024-06-07T01:07:35Z) - Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules [7.0549244915538765]
予測モデリングの不確かさは、しばしばアドホック法に依存する。
本稿では,統計的リスクを通じて不確実性を理解するための理論的アプローチを紹介する。
我々は、ポイントワイズリスクをベイズリスクと過剰リスクに分割する方法を示す。
論文 参考訳(メタデータ) (2024-02-16T14:40:22Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Domain Generalization without Excess Empirical Risk [83.26052467843725]
一般的なアプローチは、一般化を捉え、ペナルティと共同で経験的リスクを最小化するために、データ駆動の代理ペナルティを設計することである。
我々は、このレシピの重大な失敗モードは、共同最適化における誤ったペナルティや難しさによる過度なリスクであると主張している。
我々は,この問題を解消するアプローチを提案し,経験的リスクと刑罰を同時に最小化する代わりに,経験的リスクの最適性の制約の下でのペナルティを最小化する。
論文 参考訳(メタデータ) (2023-08-30T08:46:46Z) - On the Importance of Gradient Norm in PAC-Bayesian Bounds [92.82627080794491]
対数ソボレフ不等式の縮約性を利用する新しい一般化法を提案する。
我々は、この新たな損失段階的ノルム項が異なるニューラルネットワークに与える影響を実証的に分析する。
論文 参考訳(メタデータ) (2022-10-12T12:49:20Z) - Mitigating multiple descents: A model-agnostic framework for risk
monotonization [84.6382406922369]
クロスバリデーションに基づくリスクモノトナイズのための一般的なフレームワークを開発する。
本稿では,データ駆動方式であるゼロステップとワンステップの2つの手法を提案する。
論文 参考訳(メタデータ) (2022-05-25T17:41:40Z) - A Manifold View of Adversarial Risk [23.011667845523267]
本研究は,2種類の新しい対向リスク,通常の方向に沿った摂動による通常の対向リスク,多様体内の摂動による対向リスクについて検討する。
通常のリスクと人的リスクの両方がゼロであっても、標準的な敵のリスクはゼロである可能性があるという悲観的なケースを示します。
論文 参考訳(メタデータ) (2022-03-24T18:11:21Z) - A Full Characterization of Excess Risk via Empirical Risk Landscape [8.797852602680445]
本稿では,滑らかな凸関数と非損失関数の両方を持つ固有アルゴリズムにより訓練されたモデルのリスクを統一的に解析する。
論文 参考訳(メタデータ) (2020-12-04T08:24:50Z) - Learning Bounds for Risk-sensitive Learning [86.50262971918276]
リスクに敏感な学習では、損失のリスク・アバース(またはリスク・シーキング)を最小化する仮説を見つけることを目的としている。
最適化された確実性等価性によって最適性を記述するリスク感応学習スキームの一般化特性について検討する。
論文 参考訳(メタデータ) (2020-06-15T05:25:02Z) - Orthogonal Statistical Learning [49.55515683387805]
人口リスクが未知のニュアンスパラメータに依存するような環境では,統計学習における非漸近的過剰リスク保証を提供する。
人口リスクがNeymanityと呼ばれる条件を満たす場合,メタアルゴリズムによって達成される過剰リスクに対するニュアンス推定誤差の影響は2次であることを示す。
論文 参考訳(メタデータ) (2019-01-25T02:21:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。