論文の概要: Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules
- arxiv url: http://arxiv.org/abs/2402.10727v2
- Date: Thu, 6 Jun 2024 15:52:17 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-07 23:30:46.924637
- Title: Predictive Uncertainty Quantification via Risk Decompositions for Strictly Proper Scoring Rules
- Title(参考訳): 厳密なスコーリングルールのためのリスク分解による予測的不確実性定量化
- Authors: Nikita Kotelevskii, Maxim Panov,
- Abstract要約: 予測モデリングの不確かさは、しばしばアドホック法に依存する。
本稿では,統計的リスクを通じて不確実性を理解するための理論的アプローチを紹介する。
我々は、ポイントワイズリスクをベイズリスクと過剰リスクに分割する方法を示す。
- 参考スコア(独自算出の注目度): 7.0549244915538765
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification in predictive modeling often relies on ad hoc methods as there is no universally accepted formal framework for that. This paper introduces a theoretical approach to understanding uncertainty through statistical risks, distinguishing between aleatoric (data-related) and epistemic (model-related) uncertainties. We explain how to split pointwise risk into Bayes risk and excess risk. In particular, we show that excess risk, related to epistemic uncertainty, aligns with Bregman divergences. To turn considered risk measures into actual uncertainty estimates, we suggest using the Bayesian approach by approximating the risks with the help of posterior distributions. We tested our method on image datasets, evaluating its performance in detecting out-of-distribution and misclassified data using the AUROC metric. Our results confirm the effectiveness of the considered approach and offer practical guidance for estimating uncertainty in real-world applications.
- Abstract(参考訳): 予測モデリングにおける不確かさの定量化は、しばしばアドホックな手法に依存している。
本稿では,統計的リスクを通じて不確実性を理解するための理論的アプローチを紹介し,アレータリック(データ関連)とてんかん(モデル関連)の不確かさを区別する。
我々は、ポイントワイズリスクをベイズリスクと過剰リスクに分割する方法を説明します。
特に, 先天的不確実性に関連する過剰なリスクは, Bregmanの発散と一致している。
リスク対策を実際の不確実性推定に転換するために,リスクを後方分布の助けを借りて近似することでベイズ的アプローチを提案する。
提案手法を画像データセット上で検証し,AUROC測定値を用いた分布外および分類誤検出の性能評価を行った。
本研究は,提案手法の有効性を確認し,実世界の応用における不確実性を推定するための実践的ガイダンスを提供する。
関連論文リスト
- Uncertainty Quantification in Stereo Matching [61.73532883992135]
ステレオマッチングのための新しいフレームワークとその不確実性定量化を提案する。
我々は、不確実性と推定データの尺度としてベイズリスクを採用し、個別に不確実性をモデル化する。
我々は,不確実性の少ないデータポイントを選択することにより,予測精度を向上させるために不確実性手法を適用した。
論文 参考訳(メタデータ) (2024-12-24T23:28:20Z) - On Information-Theoretic Measures of Predictive Uncertainty [5.8034373350518775]
その重要性にも拘わらず、予測の不確実性の正しい測定に関するコンセンサスはいまだに解明されていない。
提案手法は, 予測の不確かさを, (I) 予測モデル (II) 真の予測分布の近似の2つの要因により分類する。
本研究では, 誤分類検出, 選択的予測, アウト・オブ・ディストリビューション検出など, 典型的な不確実性推定設定において, これらの指標を実証的に評価する。
論文 参考訳(メタデータ) (2024-10-14T17:52:18Z) - Probabilistic Contrastive Learning with Explicit Concentration on the Hypersphere [3.572499139455308]
本稿では,球面空間に表現を埋め込むことにより,不確実性を比較学習に取り入れる新たな視点を提案する。
我々は、濃度パラメータであるカッパを直接解釈可能な尺度として利用し、不確実性を明示的に定量化する。
論文 参考訳(メタデータ) (2024-05-26T07:08:13Z) - One step closer to unbiased aleatoric uncertainty estimation [71.55174353766289]
そこで本研究では,観測データのアクティブデノイズ化による新しい推定手法を提案する。
幅広い実験を行うことで,提案手法が標準手法よりも実際のデータ不確実性にはるかに近い近似を与えることを示す。
論文 参考訳(メタデータ) (2023-12-16T14:59:11Z) - Quantification of Predictive Uncertainty via Inference-Time Sampling [57.749601811982096]
本稿では,データあいまいさの予測不確実性を推定するためのポストホックサンプリング手法を提案する。
この方法は与えられた入力に対して異なる可算出力を生成することができ、予測分布のパラメトリック形式を仮定しない。
論文 参考訳(メタデータ) (2023-08-03T12:43:21Z) - How certain are your uncertainties? [0.3655021726150368]
ディープラーニング手法の出力の不確実性の尺度は、いくつかの点で有用である。
本研究では、これらの不確実性の測定の安定性について、大きさと空間パターンの両方の観点から検討する。
論文 参考訳(メタデータ) (2022-03-01T05:25:02Z) - Decomposing Representations for Deterministic Uncertainty Estimation [34.11413246048065]
我々は,現在の特徴密度に基づく不確実性推定器は,様々なOoD検出設定で一貫した性能を発揮できないことを示す。
本稿では,学習した表現を分解し,それらを個別に推定した不確実性を統合することを提案する。
論文 参考訳(メタデータ) (2021-12-01T22:12:01Z) - Dense Uncertainty Estimation via an Ensemble-based Conditional Latent
Variable Model [68.34559610536614]
我々は、アレータリック不確実性はデータの固有の特性であり、偏見のないオラクルモデルでのみ正確に推定できると論じる。
そこで本研究では,軌道不確実性推定のためのオラクルモデルを近似するために,列車時の新しいサンプリングと選択戦略を提案する。
以上の結果から,提案手法は精度の高い決定論的結果と確実な不確実性推定の両方を達成できることが示唆された。
論文 参考訳(メタデータ) (2021-11-22T08:54:10Z) - DEUP: Direct Epistemic Uncertainty Prediction [56.087230230128185]
認識の不確実性は、学習者の知識の欠如によるサンプル外の予測エラーの一部である。
一般化誤差の予測を学習し, aleatoric uncertaintyの推定を減算することで, 認識的不確かさを直接推定する原理的アプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T23:50:35Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。