論文の概要: Domain-conditioned and Temporal-guided Diffusion Modeling for Accelerated Dynamic MRI Reconstruction
- arxiv url: http://arxiv.org/abs/2501.09305v1
- Date: Thu, 16 Jan 2025 05:39:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-17 15:09:02.866795
- Title: Domain-conditioned and Temporal-guided Diffusion Modeling for Accelerated Dynamic MRI Reconstruction
- Title(参考訳): 動的MRIの高速化のための領域条件付き及び時間誘導拡散モデル
- Authors: Liping Zhang, Iris Yuwen Zhou, Sydney B. Montesi, Li Feng, Fang Liu,
- Abstract要約: dDiMoフレームワークは、時間分解次元から時間情報を統合する。
提案手法は, 心的マルチコイルMRIとGolden-Radial-Angle-acquired multicoil free-acquired MRIの2種類のMRIデータを用いて検討した。
- 参考スコア(独自算出の注目度): 5.116849432626762
- License:
- Abstract: Purpose: To propose a domain-conditioned and temporal-guided diffusion modeling method, termed dynamic Diffusion Modeling (dDiMo), for accelerated dynamic MRI reconstruction, enabling diffusion process to characterize spatiotemporal information for time-resolved multi-coil Cartesian and non-Cartesian data. Methods: The dDiMo framework integrates temporal information from time-resolved dimensions, allowing for the concurrent capture of intra-frame spatial features and inter-frame temporal dynamics in diffusion modeling. It employs additional spatiotemporal ($x$-$t$) and self-consistent frequency-temporal ($k$-$t$) priors to guide the diffusion process. This approach ensures precise temporal alignment and enhances the recovery of fine image details. To facilitate a smooth diffusion process, the nonlinear conjugate gradient algorithm is utilized during the reverse diffusion steps. The proposed model was tested on two types of MRI data: Cartesian-acquired multi-coil cardiac MRI and Golden-Angle-Radial-acquired multi-coil free-breathing lung MRI, across various undersampling rates. Results: dDiMo achieved high-quality reconstructions at various acceleration factors, demonstrating improved temporal alignment and structural recovery compared to other competitive reconstruction methods, both qualitatively and quantitatively. This proposed diffusion framework exhibited robust performance in handling both Cartesian and non-Cartesian acquisitions, effectively reconstructing dynamic datasets in cardiac and lung MRI under different imaging conditions. Conclusion: This study introduces a novel diffusion modeling method for dynamic MRI reconstruction.
- Abstract(参考訳): 目的: 動的MRI再構成のための動的拡散モデリング(dDiMo)と呼ばれる領域条件付き時間的拡散モデリング手法を提案する。
方法: dDiMoフレームワークは時間分解次元から時間情報を統合し,フレーム内空間特性の同時取得と拡散モデリングにおけるフレーム間時間ダイナミクスを実現する。
拡散過程を導くために、追加の時空間(x$-$t$)と自己一貫性の時空間(k$-$t$)を使用する。
このアプローチにより、正確な時間的アライメントが保証され、微細な画像の詳細の回復が促進される。
円滑な拡散を容易にするために, 逆拡散過程において非線形共役勾配アルゴリズムを利用する。
提案法は, カルテシア式多コイル心MRIとゴールデンアングル型多コイル自由呼吸式肺MRIの2種類のMRIデータを用いて, アンサンプレートで検討した。
結果: dDiMoは, 時間的アライメントと構造回復を, 質的, 定量的に比較して改善した。
この拡散フレームワークは, カルテシアンと非カルテシアンの両方の取得を処理し, 異なる画像条件下での心, 肺MRIの動的データセットを効果的に再構築する上で, 堅牢な性能を示した。
結論: 動的MRI再構成のための新しい拡散モデリング手法を提案する。
関連論文リスト
- Zero-shot Dynamic MRI Reconstruction with Global-to-local Diffusion Model [17.375064910924717]
本稿では,Glob-al-to-local Diffusion Model(Glob-al-to-local Diffusion Model)と呼ばれる時間インターリーブ取得方式に基づく動的MRI再構成手法を提案する。
提案手法は, 騒音の低減と保存の両面において良好に機能し, 教師付き手法に匹敵する再現性を実現する。
論文 参考訳(メタデータ) (2024-11-06T07:40:27Z) - LDPM: Towards undersampled MRI reconstruction with MR-VAE and Latent Diffusion Prior [2.3007720628527104]
The Latent Diffusion Prior based undersampled MRI reconstruction (LDPM) method was proposed。
スケジューラモジュールを用いて、再構成したMR画像の品質と忠実度を適切に制御し、バランスをとる。
MRIタスク(MR-VAE)に適応したVAEを探索し、将来のMR関連タスクのバックボーンとして機能する。
論文 参考訳(メタデータ) (2024-11-05T09:51:59Z) - NeuroPictor: Refining fMRI-to-Image Reconstruction via Multi-individual Pretraining and Multi-level Modulation [55.51412454263856]
本稿では,fMRI信号を用いた拡散モデル生成過程を直接変調することを提案する。
様々な個人から約67,000 fMRI-imageペアのトレーニングを行うことで,fMRI-to-imageデコーディング能力に優れたモデルが得られた。
論文 参考訳(メタデータ) (2024-03-27T02:42:52Z) - Diffusion Modeling with Domain-conditioned Prior Guidance for
Accelerated MRI and qMRI Reconstruction [3.083408283778178]
本研究では,ネイティブデータ領域に条件付き拡散モデルに基づく画像再構成手法を提案する。
提案手法は,特に加速係数の高い画像の再構成において,有意義な可能性を証明している。
論文 参考訳(メタデータ) (2023-09-02T01:33:50Z) - Optimizing Sampling Patterns for Compressed Sensing MRI with Diffusion
Generative Models [75.52575380824051]
圧縮センシングマルチコイルMRIにおけるサブサンプリングパターンを最適化する学習手法を提案する。
拡散モデルとMRI計測プロセスにより得られた後部平均推定値に基づいて1段階の再構成を行う。
本手法では,効果的なサンプリングパターンの学習には5つのトレーニング画像が必要である。
論文 参考訳(メタデータ) (2023-06-05T22:09:06Z) - SPIRiT-Diffusion: Self-Consistency Driven Diffusion Model for Accelerated MRI [14.545736786515837]
本稿では,k空間の拡散モデルであるSPIRiT-Diffusionを紹介する。
3次元頭蓋内および頸動脈壁画像データセットを用いたSPIRiT-Diffusion法の評価を行った。
論文 参考訳(メタデータ) (2023-04-11T08:43:52Z) - High-Frequency Space Diffusion Models for Accelerated MRI [7.985113617260289]
連続微分方程式(SDE)を持つ拡散モデルは、画像生成において優れた性能を示す。
高周波空間における拡散過程と磁気共鳴(MR)再構成に適した新しいSDEを提案する。
このアプローチは、完全サンプリングされた低周波領域における決定性を保証し、逆拡散のサンプリング手順を加速する。
論文 参考訳(メタデータ) (2022-08-10T14:04:20Z) - Diffusion Deformable Model for 4D Temporal Medical Image Generation [47.03842361418344]
3D+t(4D)情報を持つ時間体積画像は、時間動態を統計的に分析したり、病気の進行を捉えるためにしばしば医療画像に使用される。
本稿では,ソースボリュームとターゲットボリュームの中間時間ボリュームを生成する新しいディープラーニングモデルを提案する。
論文 参考訳(メタデータ) (2022-06-27T13:37:57Z) - Towards performant and reliable undersampled MR reconstruction via
diffusion model sampling [67.73698021297022]
DiffuseReconは拡散モデルに基づく新しいMR再構成法である。
観測された信号に基づいて生成過程を導出する。
特定の加速因子に関する追加の訓練は必要としない。
論文 参考訳(メタデータ) (2022-03-08T02:25:38Z) - Dynamic Mode Decomposition in Adaptive Mesh Refinement and Coarsening
Simulations [58.720142291102135]
動的モード分解(DMD)はコヒーレントなスキームを抽出する強力なデータ駆動方式である。
本稿では,異なるメッシュトポロジと次元の観測からDMDを抽出する戦略を提案する。
論文 参考訳(メタデータ) (2021-04-28T22:14:25Z) - Multifold Acceleration of Diffusion MRI via Slice-Interleaved Diffusion
Encoding (SIDE) [50.65891535040752]
本稿では,Slice-Interleaved Diffusionと呼ばれる拡散符号化方式を提案する。
SIDEは、拡散重み付き(DW)画像ボリュームを異なる拡散勾配で符号化したスライスでインターリーブする。
また,高いスライスアンサンプデータからDW画像を効果的に再構成するためのディープラーニングに基づく手法を提案する。
論文 参考訳(メタデータ) (2020-02-25T14:48:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。