When 3D Bounding-Box Meets SAM: Point Cloud Instance Segmentation with
Weak-and-Noisy Supervision
- URL: http://arxiv.org/abs/2309.00828v1
- Date: Sat, 2 Sep 2023 05:17:03 GMT
- Title: When 3D Bounding-Box Meets SAM: Point Cloud Instance Segmentation with
Weak-and-Noisy Supervision
- Authors: Qingtao Yu, Heming Du, Chen Liu, Xin Yu
- Abstract summary: We propose a complementary image prompt-induced weakly-supervised point cloud instance segmentation (CIP-WPIS) method.
We leverage pretrained knowledge embedded in the 2D foundation model SAM and 3D geometric prior to achieve accurate point-wise instance labels.
Our method is robust against noisy 3D bounding-box annotations and achieves state-of-the-art performance.
- Score: 20.625754683390536
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Learning from bounding-boxes annotations has shown great potential in
weakly-supervised 3D point cloud instance segmentation. However, we observed
that existing methods would suffer severe performance degradation with
perturbed bounding box annotations. To tackle this issue, we propose a
complementary image prompt-induced weakly-supervised point cloud instance
segmentation (CIP-WPIS) method. CIP-WPIS leverages pretrained knowledge
embedded in the 2D foundation model SAM and 3D geometric prior to achieve
accurate point-wise instance labels from the bounding box annotations.
Specifically, CP-WPIS first selects image views in which 3D candidate points of
an instance are fully visible. Then, we generate complementary background and
foreground prompts from projections to obtain SAM 2D instance mask predictions.
According to these, we assign the confidence values to points indicating the
likelihood of points belonging to the instance. Furthermore, we utilize 3D
geometric homogeneity provided by superpoints to decide the final instance
label assignments. In this fashion, we achieve high-quality 3D point-wise
instance labels. Extensive experiments on both Scannet-v2 and S3DIS benchmarks
demonstrate that our method is robust against noisy 3D bounding-box annotations
and achieves state-of-the-art performance.
Related papers
- Bayesian Self-Training for Semi-Supervised 3D Segmentation [59.544558398992386]
3D segmentation is a core problem in computer vision.
densely labeling 3D point clouds to employ fully-supervised training remains too labor intensive and expensive.
Semi-supervised training provides a more practical alternative, where only a small set of labeled data is given, accompanied by a larger unlabeled set.
arXiv Detail & Related papers (2024-09-12T14:54:31Z) - AutoInst: Automatic Instance-Based Segmentation of LiDAR 3D Scans [41.17467024268349]
Making sense of 3D environments requires fine-grained scene understanding.
We propose to predict instance segmentations for 3D scenes in an unsupervised way.
Our approach attains 13.3% higher Average Precision and 9.1% higher F1 score compared to the best-performing baseline.
arXiv Detail & Related papers (2024-03-24T22:53:16Z) - Open3DIS: Open-Vocabulary 3D Instance Segmentation with 2D Mask Guidance [49.14140194332482]
We introduce Open3DIS, a novel solution designed to tackle the problem of Open-Vocabulary Instance within 3D scenes.
Objects within 3D environments exhibit diverse shapes, scales, and colors, making precise instance-level identification a challenging task.
arXiv Detail & Related papers (2023-12-17T10:07:03Z) - U3DS$^3$: Unsupervised 3D Semantic Scene Segmentation [19.706172244951116]
This paper presents U3DS$3$, as a step towards completely unsupervised point cloud segmentation for any holistic 3D scenes.
The initial step of our proposed approach involves generating superpoints based on the geometric characteristics of each scene.
We then undergo a learning process through a spatial clustering-based methodology, followed by iterative training using pseudo-labels generated in accordance with the cluster centroids.
arXiv Detail & Related papers (2023-11-10T12:05:35Z) - Weakly Supervised 3D Instance Segmentation without Instance-level
Annotations [57.615325809883636]
3D semantic scene understanding tasks have achieved great success with the emergence of deep learning, but often require a huge amount of manually annotated training data.
We propose the first weakly-supervised 3D instance segmentation method that only requires categorical semantic labels as supervision.
By generating pseudo instance labels from categorical semantic labels, our designed approach can also assist existing methods for learning 3D instance segmentation at reduced annotation cost.
arXiv Detail & Related papers (2023-08-03T12:30:52Z) - Learning Inter-Superpoint Affinity for Weakly Supervised 3D Instance
Segmentation [10.968271388503986]
We propose a 3D instance segmentation framework that can achieve good performance by annotating only one point for each instance.
Our method achieves state-of-the-art performance in the weakly supervised point cloud instance segmentation task, and even outperforms some fully supervised methods.
arXiv Detail & Related papers (2022-10-11T15:22:22Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - Box2Seg: Learning Semantics of 3D Point Clouds with Box-Level
Supervision [65.19589997822155]
We introduce a neural architecture, termed Box2Seg, to learn point-level semantics of 3D point clouds with bounding box-level supervision.
We show that the proposed network can be trained with cheap, or even off-the-shelf bounding box-level annotations and subcloud-level tags.
arXiv Detail & Related papers (2022-01-09T09:07:48Z) - SASA: Semantics-Augmented Set Abstraction for Point-based 3D Object
Detection [78.90102636266276]
We propose a novel set abstraction method named Semantics-Augmented Set Abstraction (SASA)
Based on the estimated point-wise foreground scores, we then propose a semantics-guided point sampling algorithm to help retain more important foreground points during down-sampling.
In practice, SASA shows to be effective in identifying valuable points related to foreground objects and improving feature learning for point-based 3D detection.
arXiv Detail & Related papers (2022-01-06T08:54:47Z) - 3D Guided Weakly Supervised Semantic Segmentation [27.269847900950943]
We propose a weakly supervised 2D semantic segmentation model by incorporating sparse bounding box labels with available 3D information.
We manually labeled a subset of the 2D-3D Semantics(2D-3D-S) dataset with bounding boxes, and introduce our 2D-3D inference module to generate accurate pixel-wise segment proposal masks.
arXiv Detail & Related papers (2020-12-01T03:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.